Proceedings of COBEM 2003 17th International Congress of Mechanical Engineering(’|
COBEM2003 - 1109  Copyright © 2003 by ABCM November 10-14, 2003, Séo Paulo, SP(]

TOPOLOGY OPTIMIZATION OF MASS UNDER MULTIPLE
LOAD CONDITIONS AND MATERIAL FAILURE CONSTRAINTS

Eduardo A. Fancello
GRANTE, Departamento de Engenharia Mecénica, Universidade Federal de Santa Catarina - Brasil.
e-mail: fancello@grante.ufsc.br

Jucelio T. Pereira
Departamento de Engenharia Mecénica, Centro Federal de Educacao Tecnolégica do Parana - Brasil.
e-mail: jucelio@cefetpr.br

Abstract: This work presents a numerical approach to deal with the topology optimization of a mechanical device
in which the minimum mass is searched subject to material failure constraints and multiple load conditions. The
formulation combines the SIMP approach and the Augmented Lagrangian technique in order to handle local stress
constraints. The consideration of multiple loads in this formulation follows as a simple extension of the single loaded
case. Analyitical sensitivity analysis is used to obtain low costs derivatives. Three numerical results are presented in
order to compare final designs due to each load case and due to the multiple loaded case. An important observation
is that the final design due to a multiple loaded case is not a simple envelope of a single loaded case. Morover, the
numerical costs of considering multiple loads are not much greater than those of the single loaded case.
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1 Introduction

The design of mechanical devices that use the least material as possible but are capable of performing their function
without material failure is an attractive and frequent goal in industrial applications. Topological optimization is
perhaps today’s most flexible numerical tool available to perform a systematic search of this kind of designs. The
literature associated with this research area show several approaches to solve this problem and, despite not being
rigorous, two groups of techniques may be distinguished.

The first one contains those formulations in which a classical optimization problem is set and its solution obtained
through mathematical programming techniques. The second group includes those approaches that define a local
criterion to update the design variables. This criterion may be related to optimality conditions or being an heuristic
construction. Moreover, it is called local if the design change at a particular material point depends on information
of just a neighborhood of that point.

Both approaches have several advantages and drawbacks. Formulations from the first group hold a clear math-
ematical structure and their solution guarantee the satisfaction of the optimization statement. They are also quite
flexible in the sense of being capable to consider different types of constraints and cost functions. The prize of these
benefits is the computational cost of solving a mathematical programming problem in which the evaluation of cost
function, constraints and their derivatives involves the solution of equilibrium equations. Moreover, convergence
problems are usually faced.

Algorithms from the second group usually spend much less time of CPU than those from the first group. They
do not usually show convergence problems, in many cases for the simple reason that no convergence test is applied
besides some care about instable design evolutions. In spite of these advantages, the final design has no commitment
to satisfy the original desired requirements.

Only a few works dealing with mass minimization and material failure constraints in continuum structures may
be found within the first approach. Among them, Duysinx & Bendsge (1998), Duysinx & Sigmund (1998), Stolpe
& Svanberg (2001), Pereira (2001) Pereira et al. (2003) The second approach has received increasing attention,
mainly due to their simplicity and relative low computational effort. Fully stressed based algorithms, evolutionary
algorithms, performance based algorithms, etc., should be classified within the second group. Among many others,
Xie & Steven (1993,1997), Cursi & Pagnaco (1995) , Novotny et al. (1998) , Querin et all (2000), Lin & Chao
(2001) .

The present work is based on the first approach and addresses the most frequent situation on mechanical design:
multiple load conditions.

Multiple load conditions are usually treated as a multiobjective optimization in the compliance problem; the
objective function is a weighted combination of the compliances of each load condition. However, difficulties arises
by the time of defining the value of the corresponding weights. In evolutionary or fully-stressed type algorithms,
multiple loads are frequently treated by including some heuristics in the local criterion in order to take into account
the mechanical response due to each load. On the other hand, the mathematical problem of mass minimization
subject to local material failure constraints and multiple load cases is just a natural extension of that with a single
load case. No additional heuristic or weighting function definition is needed. Moreover, it will be seen that numerical
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costs associated with of a multiple loaded problem are not necessarily much greater than those of a single loaded
case.

This paper should be viewed as an extension of the work of Pereira et all (2003) in order to include multiple
load conditions.

For a given domain (2, the problem to be solved is

Minimize Mass (1)
Subject to: F;(0;(x)) <0, V x€Q, i=1..N,

where F; is a material failure function related to the stress field o; (x) in equilibrium with the corresponding i-th
load case. N is the number of load cases. It is well known that direct treatment of (1) as a problem of finding a
characteristic function indicating existence or not-existence of material is ill-posed. Therefore, several techniques
are used to circumvent this problem. The present work formulates (1) in the same way as developed in Duysinx &
Bendsge (1998), i.e. combining the SIMP technique and a local material failure constraint. The numerical approach,
however is quite different. The next three sections are dedicated to present briefly the principles of the formulation
and its numerical approach. Section 5 presents numerical examples in which optimal designs for multiple loaded
structures are analyzed.

2 Formulation

For simplicity sake the state equations are restricted to linear elastic elasticity where a body (2 submitted to contact
forces t and known displacements i on its boundary as shown in Figure 1. As in most topological problems, we
distinguish the material part €2, of  and the void region €2,. Being u, e(u) and o(u) the displacement, strain and
stress fields and D the elasticity tensor, we have the following boundary value problem:

o(u) = De(u) = DVSu,

div o(u)=0 VxeQ,
cn=1% Vxedly C (00, NnoN) ,
on=20 Vx el :=00,\ 00y UIND) , (2)
u=ua VxeopC(0Q,NnoN) .

Figure 1: Geometric definitions of a domain composed by solid and voids.

Using the SIMP artificial microstructure (Solid Isotropic Microstructure with Penalty for intermediate materials,
Bendsge & Sigmund, 1999), the design space includes a continuous variation of material between solid (p = 1) and
void (p = 0). The constitutive behavior depends on the relative density p and the solid material elasticity tensor D
through the following expression:

D, = fp (p) D = p"D, 3)
oc=D,e. (4)

The effective stress tensor ¢ for an arbitrary intermediate material is set to be greater than the homogenized stress
o and dependent on the original (solid material) elasticity tensor and on the apparent (homogenized) value of
deformation (Duysinx & Bendsge ,1998):

g=De. (5)

For a given effective stress tensor & an equivalent scalar stress o, (for example, von Mises) is computed. With this
value, a failure function is defined as

F(p)= 2= —1<0, (6)



where 044m is the material yielding stress or admissible maximum value. When density goes to zero, high deforma-
tions may occur due to low stiffness and consequently, large but finite local effective stresses are computed. This
phenomenon, known as Stress Singularity, is characterized for introducing a discontinuity on the failure function
for null values of p.The e-regularization technique proposed by Cheng & Guo (1997) is used to overcome this
inconvenience through the following re-definition of the failure function:

4 = p(X)F(E(x) —c(1—p(x) <0, ae.in®, -
0< € =pmin <px) <1, VxeN.

The optimization problem is then set as the minimization of the functional m (p) subject to a set of local failure
constraints:

Min (o) = [ pa+ g, [ £,) a0t ra [ £ (o) a0 ®)

pEW,2(Q)

Subject to : g; (x) <0 a.e.inQ, i=1..N,

where
fo(p) = (V)" (V) ,
Im (p) =p(1=p),
W2 () ={p|lpeW"(Q); 0< pmin < p(x) <1Vx €N}

The checker-board phenomenon is controlled by the second term of m (p), which is a penalization of the density
gradients (Pereira (2001), Pereira et all (2001), Borrvall (2001)). The third term introduces an explicit penalization
of the intermediate densities. Constants r,, and r, are the corresponding penalization factors.

Aiming to obtain numerical solutions, a classic Augmented Lagrangian functional is defined by introducing the
stress constraints as penalization terms into the cost function:

N N
£(piAm) =m o)+ Yomi (o) =m () + 3 [ Mi(pidi,ri) do, (9)
i=1 i=1 7%
M; (p; Aiy i) dQ = rlimax {!h' (p,73) [)\m + %gi 2 5i))] ; —@} . (10)

The penalization functional m; (p; A;,7;) for the i-th load case consist of linear and quadratic terms of the failure
function g; that are multiplied by a penalization parameter r; > 0 and by a Lagrangian function \; € L? ().
Thus, for a given set t* = {r¥ r§ ... 7k} > 0and \¥ = {\F X5 . 0K} AF e L2 (Q), the following box-constrained
problem can be solved:

Min £ (p; )\k,rk) (11)

PEW,2(Q)

The solution of the whole optimization problem is obtained by solving a sequence of subproblems (11) with an
adequate updating of parameters A*,rF. In this work the standard Augmented Lagrangian updating rule was
chosen (Bertsekas, 1996):

1 TI-H_l
PUARIES max{/\f + Eg,-(p,ﬁi);O} Lottt = s (12)

3 Sensitivity Analysis

The algorithm chosen to solve problem (11) needs information of first order derivatives of the Lagrangian functional.
Detailed operations to obtain analytical expressions of these gradients are found in Pereira et all (2003). The
directional (Gateaux) derivative of the objective functional £ (p; \¥,r*) for fixed and known values of A¥ and r* is
given by:

N

£ (ps X6, x%) [y] = 1o (p) [y] + D _rivi (p; AF, ) [w), (13)
i=1

i)l = [ [+ T 1y, G0y a0, (14)

i (03 AF,78) [l = mi (p; A7) ] — B' (i, uf) [y] +1'(ud) [y] (15)



i (o) ) = [ 2T g
Q

op
- [{F e +d o+ yan, (16)

In these expressions, y is a variation of p, u; is the displacement field for the i-th load case and u? is the adjoint
solution for the i-th adjoint problem associated to the corresponding load case. The first term, m(p), depends
explicitly on density p and its derivative is straightforward. The penalization terms m; (p; )\f,rz’?) are implicitly
dependent on p through the mechanical solutions u; (p) for each load case. Their derivatives are obtained by the
adjoint method (Haug et all, 1986). The partial (Gateaux) derivative of B for fixed real displacements u; and

adjoint solution uf is given by

By sy (0, u}) — B, (u,uf)
S

e — 1
B’ (u;,uf) [y] gln’(l] [
= /qu(qfl) [DVSui . Vsu?] y dS) . (17)

Moreover, it is assumed (for simplicity sake) that external loads do not depend on p and then I} (uf) [y] = 0. The
solution uf is computed from classical expression of the adjoint problem:

a _ aM, S
B(ui,v)—/ﬂ(avsu Vv)dﬂ, Vvev, (18)
- / (,% (gi (x) +7E2E)" H‘”’-vsv) 2y, Yvev, (19)
Q i

where H? is a second order tensor obtained explicitly from the material failure criterion evaluated at the current
stress state o; = o(u;).

It is important to make some comments on the computational cost of these computations. To evaluate the
Lagrangian functional £ for given values of p, \¥, r* a set of N equilibrium solutions u; are needed. To obtain the
gradient of £, the additional computation of N adjoint solutions u? (plus some integration effort) is also required.
Moreover, the bilinear form B, (-, -) for the adjoint problem and for real problem is the same and it is independent on
the load condition. If essential boundary conditions do not change with loads, the computation u; , uf , 7 = 1...N,
may be performed with the same triangularized stiffness matrix and with N back-substitutions. Thus, the effort
spent to calculate the value of the cost function is practically the same as that to compute the gradient of it.

4 Discretization and numerical procedure

Present implementation is limited to 2D problems although the formulation applies for 3D problems as well. Due
to their flexibility in mesh generation and low computational costs, the classical three-node Lagrangian element was
used to solve the boundary value problem. The same shape functions are used to define a continuous density field p
whose nodal values play the role of design variables. Checkerboard phenomenon, common in low-order elements, is
easily stabilized with the penalization term on density gradient. Failure function is evaluated at element level at the
element centroid. Thus, the number of design variables is proportional to the number of nodes while the number
of stress constraints is proportional to the number of elements (which in triangular meshes is approximately twice
the number of nodes)

As proposed in Section 2, the Augmented Lagrangian procedure is used which implies the solution of a sequence
minimization subproblems. For the k-th subproblem a set of Lagrangian multipliers and penalization factors (A¥, r*)
is set and the minimization of the objective functional £(p; A¥,r*) subject to side constraints is performed. This
sequence follows the next strategy:

. Define k =0, 7, 7p, A¥ and r¥;

. Minimize the functional £ (p; A%,r%), 0 < pmin < p(x) < 1;

. Verify convergency within a tolerance. If satisfied, stop the process;
. Update n*, ¢, rk;

. k=k+ 1, Return to Step 2.

U W N~

The optimization algorithm used in Step 2 is a non-linear trust-region algorithm proposed by Friedlander et
all, 1994 . This algorithm was generalized by Bielschowsky et all, 1997, and it is based on the construction of a
quadratic subproblem defined on a trust region and on the search algorithm along its sides. An adaptive strategy
is also used based on the quality of the approximated subproblem that modifies the size of the trust region to
accelerate convergence. The results ot this work were obtained with an implementation of this algorithm, called
BOX-QUACAN, provided by the former authors and parametrically adapted to the present case.



5 Numerical Results

This section is devoted to show some results comparing optimal designs due to different load cases and due to their
combination. An analysis of the influence of the set of parameters like ry,,r,, A¥ rF and € on numerical results is
found in Pereira et all (2003). In present examples the following values were used, unless a difference is particularly
specified: 7, = 0,95, 7, = 0.001, D = p*D, €2 = ppin = 0.01.

5.1 Traction and bending of a beam

This simple example exploites many particularities of the present formulation and points out some polemic aspects
such as the fully stressed design condition. Analogous example was shown in Pereira (2003) but no multiple loaded
case was analyzed. The background domain is a square beam with symmetry boundary conditions on the left side
and submitted to traction and bending forces on the right side (see Figure 2). The value of t; = 17.5 Pa while
ty = 30 Pa. The stress limit is 044, = 35Pa. Other parameters are E = 100Pa, v = 0.3. Two regions are defined;
the left one is submitted to optimization while the right one is fixed. Figure 3 show the final design for the first
load case in which a bar of half the transversal section of the original bar is obtained. A fully stressed design
condition is fulfilled on the left side of the bar while a smooth, not fully-stressed transition is found on the right
side. Different design is obtained for the “pure-bending” case (Figure 4). Material is spread up and down in order
to increase the moment of inertia of the cross section. The failure function is saturated only at the extreme lower
and upper boundaries, what show a didactic case in which a fully-stressed design condition cannot be achieved:
further elimination of material even in a non saturated region will produce inadmissible stress values at upper/lower
boundaries of the beam. The consideration of both (not simultaneous) loads is shown in Figure (5) It is possible
to see that the cross section maintains half the size of the original one in order to support traction forces. Two
bars remain at the “flanges” of the beam but a different transition with the fixed part of the beam was obtained.
Moreover, as traction can bend the “flanges”, a thin vertical column is inserted to avoid this movement. Figures 6
and 7 show the e-relaxed failure function of this final design for each of both load cases
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Figure 2: Traction and bending of beam.
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Figure 3: Density distribution for traction load.
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Figure 4: Density distribution for bending load.
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Figure 5: Density distribution for traction and flexion loads.
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Figure 6: Multiple load case design. e-relaxed failure function for traction load.

5.2 Anisotropic failure criterion

This example shows a case in which the failure function behaves different in traction than in compression. The
failure function is defined by the model of Raghava (Raghava et all, 1973) and the example consists in a squared
background mesh submitted to a distributed force applied to a small region at bottom with fixed density (see Figure
8). The upper boundary is clamped. The same load is applied to up, down, left and right directions. The value of
the total force is P, = P, = P; = Py = 1N. The admissible stress in traction is agdm = 2.5 Pa and in compression
0% 4m = 7.5 Pa. Material parameters are £ = 100 Pa, v = 0.3, L = 1lm. Figure 9 show the final design for Load 1.
As expected, the bar in traction has a wider cross section. Similar behavior happens for the third and fourth loads
at vertical direction. Figures 10 show the final design for Load 3 (traction). The final density distribution due to
the four loads individually applied is presented in Figure 11. It is possible to see that this topology and shape is
quite similar to that of the first load but with both bars with the same height, which is clearly a consequence of
failure constraints to loads 1 and 2. The e-relaxed failure function of this final design for loads 1 and 3 are shown

in Figures 12,13.

5.3 Constrained domain

This example can be classified as belonging to those cases in which the background domain introduces an initial
geometric constraint. This type of problems is perhaps the most usual case in practical applications: the final
design must fit in an available room.

Due to the existence of a singular stress point at the inner corner of the L-shaped initial background domain, the
present case may be used as a benchmark for those formulations that search the satisfaction of failure constraints;
the algorithm should find a final shape avoiding these inial stress concentrations. Two load are applied on a small
fixed region at the right side of the initial domain (see Figure 14). The solution for the vertical load was considered
in Pereira et all (2003) and it is shown in Figure 15a). Material and geometric data is E = 100Pa, v = 0.3,
L = 1.0m, 044m = 42.42 Pa, P, = P, = 1.0N. The final design for the horizontal load and for the multiple load
condition are shown in figures 15b),16. Comparing the solution due to the vertical load with that for the multiple
loaded case it is possible to see the accentuation of the radius close to the inner initial corner as well as the the
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Figure 7: Multiple load case design. e-relaxed failure function for flexion load.
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Figure 8: Anisotropic failure function.
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Figure 9: Density distribution for load 1.
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Figure 10: Density distribution for load 4.
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Figure 11: Density distribution for multiple load conditions (loads 1 to 4).
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Figure 12: Multiple load case. e-relaxed failure function for load 1.
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Figure 13: Multiple load case. e-relaxed failure function for load 4.



growth of the cross section near the clamped boundary due to bending stresses produced by the horizontal load.

\ 2L/5 \
3L
5
3L/5 ‘
2‘5L [ ™ P>
i

Figure 14: Constrained domain.
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Figure 15: Density distribution for a)vertical load and b)horizontal load.
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Figure 16: Density distribution for vertical and horizontal loads.



6 Final considerations

This work discusses the consideration of a multiple load cases in a formulation oriented to minimize the mass of a
mechanical component subject to material failure constraints. The theoretical principles of the problem are briefly
outlined and follow the same formulation shown in Pereira (2001) and Pereira et all (2003) for a single loaded
problem. The numerical results show, as expected, significative differences of design for each load. Moreover, the
final design that satisfies failure constraints for all individual loads shows a topology that is not just an “envelope”
of each individual design (which is the most frequent intuitive guess). From a numerical point of view, it is claimed
that, for the present formulation, the computational effort spent to consider failure constraints due to multiple
loads is not much grater than for that for a single loaded case; if the same essential boundary conditions are
considered, the same triangularized stiffness matrix is used for each load and, consequently, multiple solutions and
adjoint solutions for gradient computations are easily performed by back-substitution operations. Unfortunately,
real problems submitted to different loads usually produces different contact regions and load transmission in
mechanical devices. The consideration of contact conditions in multiple loaded is object of future works.
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