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Abstract. The gyroscopic effect changes the natural frequencies of rotator machines, which induce the appearance of a pair of 
frequencies, called whirling frequencies. The highest whirling frequencies value of a pair presents a rotation in same direction of 
the rotor and the other, the lowest, rotate in the other direction. The occurrence of the highest or lowest frequencies depends on the 
rotation and on the initial condition of the problem. When the velocity of rotation has a whole multiple of the value of the whirling 
frequencies, there is a violent vibration that may damage the machine. In the design of rotator machine, the operation closer these 
points must be avoided. In this paper, computer software to determine the whirling frequencies using finite elements technique, 
considering the effects of the rotatory inertia and shaft-bending shear, has been developed. The discretization process has 
considering three basic elements: shaft, disc and bearings. This modeling has assembled the damping, stiffness, mass and 
gyroscopic matrices. The rank these matrices depend of the number of nodes, and for every node there are four degrees of freedom. 
The problem has been described in the space state, in order to obtain the classic eigenvalue and eigenvector problem. We realized 
the simulation of the multi disk rotor in order to obtain the Campbell diagram. 
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1. Introduction 

 
The time of high velocity was opened in final of the nineteen century, when Carl Gustaf of Laval developed a butter 

separator powered by steam turbine that reached high velocities, up 30,000 rpm, (Dimaragonas, 1976). Nowadays the 
modern turbo machines reach high rotation velocities, about 50,000 rpm, for example the propulsion jet turbines used in 
airplanes. This is the reason, because is very important to study the movements of rotate machines covering concepts 
such as: critics velocities, whirling frequency and gyroscopic effects. 

The critics velocities appear when in same rotation the rotor is excited, going in resonant state and having 
catastrophic vibration, therefore is indispensable that this critics velocities taken been in consideration in the design of 
this machines. Gyroscopic effect is associated with the variation of direction of angular rotation momentum, that do the 
machine shown a precession, this phenomenon can be watched in a automobile doing a curve, the engine turn around of 
its crankshaft been this movement damping by dashpot, (Mabie, 1980). These precession effects do that each natural 
frequency been double, this one highest, called of forward, and another one smallest, called backward. This couple of 
frequencies is called as whirling and the direction depends of the initial conditions. 

 
2. Basic elements of rotors 

 
The basic elements of a good model are: disk, shaft and bearing elements. As following, this elements will be 

described through of its strain and kinetic energy. 
 

2.1. The disk element 
 
Using form function that satisfy the boundary conditions, in the generic form are given by, (Oliveira, 1999): 
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Where L (m) is the disk dimension, a, b, c are constants and y is the position along of disk or shaft. So the kinetic energy 
TD of disk element can be written, generalized coordinates form, like this
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Where MD is the disk mass (kg), 1q& , 2q&  are velocity (m/s), IDX, IDY  are inertia momentum (kg.m2). and Ω rotation 
(rad/s). 
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2.2. The shaft element 
 
The element shaft has both kinetic and strain energy due elastic deformation, so the kinetic energy is: 
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Where ρ is the density (kg/m3), I is area momentum (m4) and S is the shaft cros section area (m2), so the strain energy is: 
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Where E is the Young module (Pa). 

 
2.3. The bearing element 

 
The virtual work executed by bearing forces, δ is a variation, that act in the shaft is given by: 
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Where kxx, kzz, kxz, kzx are the stiffness constants (N/m). The cxx, czz, czx and cxz are the damping constants (N.s/m). 

We can see the adopted referencials in the Fig. (1). 

 
Figure 1 Adopted referential 
 
3. Discretization method fundaments 

 
Starting with the Hamilton equation, we have: 
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Where T is the kinetic energy, V is the strain energy, wnc is the virtual work of no conservatives forces and δ is a 
variation. 

We can get the Lagrange equation for discreet system with n degree of freedom, described by independent 
displacement q1 , q2,..., qn : 
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Where Qi is the generalized force. 

 
4. Transfer matrix from locals coordinates to global  

 
The transfer matrixes in the global coordinates are like this: 
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Where [M], [K] and [C+G] are the mass, stiffness, damping and gyroscopic global matrix respectively. The [m], [k] and 
[c+g] are the mass, stiffness, damping and gyroscopic local matrix respectively. The [a] is the transfer matrix, 
compound of “1” and “0”.The transfer matrix dimension is 8x8n for shaft element and 4x8n for bearing and disk 
elements. 

 
5. Equation solution 

 
The numbers of degrees of freedom of the rotor, chosen of model, has 5 nodes with four degrees of freedom each 

node, therefore 20 degrees of freedom. This way all equationing of the rotors was modeled through of 4n matrix 
dimension. So the dimensions of matrix [M], [C+G] and [K] are 20x20, therefore the dimension of matrix [A] and [B], 
eigenvalue problem, are 40x40. This way, we obtained 40 eigenvalues double in pairs, that is, 20 natural frequencies. 

 
6. Finite elements model 

 
6.1. Disk element 

 
In each node, the rotors has four degrees of freedom: two linear displacements u and w and two angular 

displacements around of the X and Y axes, θ and ψ, respective. So the displacements nodal vector, q of disk center mass 
are: 

 
{ } { } Twuq ψθ=  (11) 
 
Using Lagrange equation to disk element, we get: 
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6.2. Shaft element  
 
The shaft was modeled such as a bar with transversal section constant. So finite element used has two nodes, with 

four degrees of freedom in each node. Therefore the matrixes are dimension equal eight, including four linear 
displacements and four angular displacements, according to the relationship: 
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The nodal displacements are given by: 
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Using Lagrange equation to shaft element, we get: 
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The mass matrix of the shaft element is given by [ms] = [m1] + [m2]. While that the gyroscopic matrix, associated 

with the damping effect, is given by: 
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The stiffness matrixes are: 
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Where E (Pa) is the Young module and a is given by: 
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Where G (Pa) is the tranverse elasticity module, it is given by: 
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Where ν  is the Poisson coeficient, so the stiffness matrix resultant is [kS] = [k1] + [k2]. 

 
6.3. Bearings elements 

 
The model of forces applied by bearing element is given by: 
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Where Fu is the force along the X axe, Fw is the force along the Z axe (N), Mθ is the moment force around the X axe and 
Mψ is the moment force around the Z axe (N.m). 

 
7. State space model 

 
The state space formulation was used of way to get the classic eingenvalue and eigenvector problem. So through of 

geral equation as following: 
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In the free case, the solution must be: 
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Replace eq. (25) in eq. (24), we get: 
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Using identity form, we can write the equation (26) the better way. This way is the state space model, so we get: 
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We can see that the equation (27) is written in the eigenvalue and eigenvector form, like this: 
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The eingenvalue and eigenvector solution, yield in 2n conjugate complex eigenvalue and therefore 2n conjugate 

complex eigenvector. The eigenvalue is given by: 
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Where ζ is damping ratio. 

 
7. Multi disk rotor simulation 

 
The rotor simulated is multi disk (Lalanne, 1990), showed in the Fig. (2): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Multi disk rotor simulated 
 
The constants used to simulate the multi disk rotor are in the Tab (1) above: 
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Table 1 inputs of multi disk rotor 
 

Symbol Value Unit 
E 2.1011 N/m2 

υ 0.3 - 
ρ 7800 Kg/m3 

Shaft 0.0079 m2 

Shaft 4.9.10-6 m4 

L1 0.2 m 
L2 0.3 m 
L3 0.5 m 
L4 0.3 m 

IDY1 0.1232 kg.m2 

IDY2 0.9763 kg.m2 
IDY3 1.1716 kg.m2 

IDx1 = IDz1 0.0646 kg.m2 
IDx2 = IDz2 0.4977 kg.m2 
IDx3  = IDz3 0.6023 kg.m2 

kxx 5.7.107 N/m 
kxz 0 N/m 
kzx 0 N/m 
kzz 7.107 N/m 
cxx 5.102 N.s/m 
cxz 0 N.s/m 
czx 0 N.s/m 
czz 7.102 N.s/m 

 
8. Flow chart of developed software 

 
The software was developed in Matlab  environment, because it is very reliable. The flow chart is showed in the 

Fig. (3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 flow chart of software 
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Through this developed software, we yield the Campbell diagram of multi disk rotor such as showed in the Fig. (4). 

 
Figure 4 Campbell diagram to multi disk rotor 
 
9. Conclusions 

 
The developed software has showed a well performance in comparison with (Lalanne, 1990) results, because the 

proposed model has a good agreement with the rotor dynamic theory. The advantage this software is that it takes in 
consideration the gyroscopic effect on disk element, we don’t consider the disk element such as shaft element like do 
another software. The shaft element was modeled according to Timoshenko beam formulation, including shear effect 
and rotatory inertia in five nodes. Moreover this software can be used in rotors where the stiffness of the bearings are 
very high, in this case they are modeled such as fix support and it is very cheaper than other specialized softwares. The 
Campbell show the gyroscopic effect on fhe natural frequencies, where the developed software calculate the whirling 
frequencies in rotation frequency function. The gyroscopic effect increase or decrease the natural frequencies, depends 
of system initial conditions. So the cross of 45° line with the whirling frequencies, are the critics velocities. This critics 
velocities must be avoid, in permanent regime case, in the turbomachine design.  
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