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Abstract: A study of a mixed convection flow in a backward facing-step heated from below is performed. At the entrance region, the 
flow has a fully developed parabolic velocity and a linear temperature profiles. The problem is considered to be laminar , bi-
dimensional, incompressible, and under the unsteady regime. The conservation equations are solved through the finite element 
method using the four-noded  quadrilateral element to calculate the distributions of the primitive variables U, V, P, and T. The 
Petrov-Galerkin approximatoin was used together with the Penalty formulation. Comparison with some results from the literature 
shows a good agreement with those performed by the techniques used in the present work.The Nusselt numbers for some cases are 
obtained by ranging the Froude number and the Reynolds number. A better comprehension of the flow in a such geometry and 
boundary conditions suggested in the paper is accomplished. Some expected flow effects are shown such as the increase of Nusselt 
number with the increase of Reynolds and Froude numbers. Not only is the behavior of the recirculation and thermal cells reasoned, 
but also their contribution to the heat transfer exchange as a whole.  
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1. Introduction 
 

The problem of laminar flow over backward-facing step geometries in natural, forced, and mixed convection has 
been investigated extensively, both numerically and experimentally. The reason for this is that the flow separation, 
reattachment, and recirculation which are influenced by a sudden change in flow geometry and by thermal conditions 
that are present, play an important role in the design of a wide range of heat transfer devices such as cooling systems for 
electronic equipment, combustion chambers, high performance heat exchangers, chemical process equipment, 
environmental control systems, and cooling passages in turbine blades.  

A significant amount of fluid energy is involved in these problems and, then, affecting their heat transfer 
performance. Some investigations have dealt with similar problems and are mentioned here. 

First, Lin et all (1991) studied the mixed convection heat transfer in inclined backward-facing step flows. The 
results presented indicate that for some convective flow conditions in backward-facing step geometry, buoyancy effects 
and/or inclination angle can play a significant role and should be included in the analysis. 

More recently, the effect of the backward-facing step heights on turbulent mixed convection flow along a vertical 
flat plate is examined experimentally by Abu-Mulaweh et all (2002). The results reveal that the turbulence intensity of 
the streamwise and transverse velocity fluctuations and the intensity of temperature fluctuations downstream of the step 
increase as the step height increases. 

Giovannini and Bortulus (1997) analyzed the heat transfer in the reattachment zone downstream of a backward 
facing step. It has been noticed that in recirculating flows the heat transfer coefficient, which is maximum in the 
reattachment zone, does not correspond in position with the mean reattachment point. The overall analysis shows the 
fundamental role played by the vortex structures concerning the mixing process and the heat transfer. Impact and 
sweeping mechanisms carry external cold fluid toward the heated solid wall and then ensure transport far away. These 
mechanisms determine the relative position of the reattachment and maximum heat transfer points both downstream and 
upstream. 

The spatial-temporal movements of the reattachment and separation points in a 2-D backward-facing step flow with 
an oscillating bottom wall were characterized by Huteau et all (2000). The results also showed that both reattachment 
and separation points moved toward (away from) the step during upward (downward) motion of the wall, and that their 
rate of variation or the covered distance is a strong function of the wall oscillation. 

Soong et all. (2001) investigated numerically the thermal-fluid behavior in a rectangular enclosure of width-to-
height aspect ratio 4:1 heated from below with wall-temperature changing sinusoidally in time. The results 
demonstrated that a bottom-wall temperature modulation of larger amplitude and/or lower frequency generated a 
relative stability. 

Finally, the onset condition of regular longitudinal vortex rolls in the thermal entrance region of plane Poiseuille 
flow heated from below was analyzed by Kim et all (2003). As expected, the critical position moves upstream as 
Rayleigh number increases and an increase in Reynolds number makes the system more stable. 
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In this paper, the study of a mixed convection flow in backward facing-step geometry is carried out. The flow is 
considered to be laminar, incompressible, and under the unsteady regime, although the results are presented in the 
steady regime. The channel entrance velocity profile is taken as parabolic and fully developed with no vertical 
components, and as for its temperature, the profile is linear. The geometrical parameters of the problem are not varied. 
Therefore, the analysis of the heat transfer is only due to the range of Reynolds and Froude numbers keeping air as the 
flow fluid.  

For validation of the computational code and the method used, some known numerical and experimental results 
from the literature are taken to be contrasted with those obtained in the present work for both an isothermal flow in a 
backward facing-step geometry and a mixed convection Poiseuille plane flow. The numerical method used to solve the 
conservation equations is the finite element method with the Petrov-Galerkin’s formulation as well as the Penalty 
technique. The spatial discretization is composed of four-noded quadrilateral elements. 
 Once the code and method are validated, some cases are studied by ranging the Froude number (1/75, 1/150, and 
1/300) and the Reynolds number  (10 and 20) keeping the Prandtl number Pr = 0.7. Therefore, the Grashof number goes 
from 7500 to 120000. 
 An analysis of the flow recirculation cells and of the thermal cells present along the channel is carried out. These 
cells behavior dictates the heat transfer exchange and hence the Nusselt number.  
 
2. Problem description 
 
 Figure (1) shows the channel geometry to be studied and the problem boundary conditions. The origin of the axes is 
placed at the top of the step. dH is taken as the downstream height, L as the length, uH as the upstream height, and H as 
the step height. For all the cases studied in this work, the values of such geometrical parameters are dH =1, H=Hu = 0.5, 
and L = 30. The channel upper wall is cooled at a constant temperature cT , while the bottom wall is heated at a constant 
temperature hT . The step wall is taken to be isolated. The cases studied throughout this paper have the upper and 
bottom wall temperatures equal to 0 and 1, respectively. At the inlet, the channel flow has a fully developed parabolic 
velocity profile and a linear temperature profile. As for the open boundary conditions OBC, as the line integrals for 
pressure are discretized and retained in the weighted residuals formulation, there is no need to apply conditions at the 
open boundary. This procedure can be found in Heinrich and Pepper (1999). 

It is studied in this paper the unsteady mixed convection by considering the flow to be laminar and incompressible. 
However, the results shown belong to the steady regime.  
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Figure 1. Channel geometry and boundary conditions. 
 
3. Problem formulation 
  
 The problem governing equations are given by the equations of mass conservation, Navier-Stokes, and energy as 
follows: 
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where u and v are the velocity components, T is the fluid temperature, t’ is the time field, TD is the thermal diffusivity, 

Tβ is the thermal expansion coefficient, ν  is the kinematic viscosity, g is the gravitational acceleration, 0ρ  is the fluid 
density and 0T  is the reference temperature taken as T0 = Tc. 
 Under the Boussinesq approximation and the following dimensionless parameters: 
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which are named as the Froude number Fr, the Prandtl number Pr,  the Grashof number Gr, the Reynolds number Re, 
the average velocity U , and  the dynamic viscosityµ , the dimensionless governing equations can be cast into the 
following form: 
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 By applying the Petrov-Galerkin’s formulation  to the equations above, Eqs. (6) to (9), together with the Penalty 
technique , the following weak form of the conservation equations are: 
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where the dependent variables are approximated by: 
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N i and Nj  denote the linear shape functions for U, V, and θ , and Mk denotes the shape functions for the constant 

piecewise pressure. ijP  are the Petrov-Galerkin perturbations applied to the convective terms only. These terms ijP  are 
defined as follows: 
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and  γ is the element Péclet number, V  is the absolute value of the velocity vector that represents the fluid average 

velocity within the each element, h  is the element average size, jε equals to 1/Re, and λ is the Penalty parameter 
which is considered to be 109. The time integration is by a semi-implicit backward Euler method. Moreover, the 
convective terms are calculated explicitly and the viscous and Penalty terms implicitly.  The temperatures and velocities 
are interpolated by using the four-noded quadrilateral elements and the pressure by the one-noded one. Finally, the 
reduced integration is applied to the penalty term to avoid numerical locking.  
 The local Nusselt number is defined as: 
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 Substituting the dimensionless parameters Y and θ from Eqs. (5) into Eq. (19), the new expression for the local 
Nusselt number is:   
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For that being so, the average Nusselt number along a surface S can be written as: 
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 The algorithm is validated by comparing the results of the present work with both the ones obtained in experimental 
and numerical investigations. Figures (2) and (3) show the geometries and the boundary conditions used in the first and 
second comparisons, respectively. Again, OBC stands for open boundary conditions. 
 The first comparison is accomplished by using the experimental results presented by Lee and Mateescu (1998), and 
Armaly et al.(1983) and by the numerical ones achieved by Lee and Mateescu (1998), Gartling (1990), Kim and Moin 
(1985), and Sohn (1988). The air flow of the present comparison analysis is taken as bidimensional, laminar, 
incompressible, and under the unsteady regime. The domain is a horizontal upstream backward-facing step channel 
whose inlet has a fully developed velocity profile given by u = 24y(0.5-y) U   and  v = 0 in which Re = 800. The 
computational domain has L = 30, Hd = 1, and Hu = Hd = 0.5 where all walls are under the no-slip condition. The 
domain discretization is done by a structured mesh with 6000 elements, and spatial increments 1.0x =∆ , 05.0y =∆ , a 
time step 05.0t =∆ , and 10000 iterations.  
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Table (1) shows the results from the first comparison for the flow separation distance Xs on the upper surface and 
its reattachment distance Xrs. As for the bottom surface, the comparison is made on the reattachment distance Xr. As  
can be noticed, the results of the present work agree well with the ones from the experimental and numerical studies 
chosen. 
 
 

  
 
 
       
 
Figure 2. Geometry and boundary conditions for the first comparison. 
 
Table1. Comparison of computed predictions and experimental measurements of dimensionless lengths (with respect to 
Hd) of separation and reattachment on upper and lower walls. 
 

Experimental results                        Computed results 

 
 

                    Length on 

T.Lee and 
D.Mateescu 

(1998) 

Armaly et 
al. (1983) 

Present 
prediction 

Gartling´s 
prediction 

(1990) 

Kim & Moin 
(1985) 

T.Lee and 
D.Mateescu 

(1998) 

Sohn 
(1988) 

Lower Wall xr 6.45 7.0 5.75 6.1 6.0 6.0 5.8 
Upper Wall xs 5.15 5.7 4.95 4.85 - 4.8 - 
 xrs 10.25 10.0 9.9 10.48 - 10.3 - 
 xrs-xs 5.1 4.3 4.95 5.63 5.75 5.5 4.63 
Reynolds  805 800 800 800 800 800 800 
Hd/Hu  2 1.94 2 2 2 2 2 
 

The second comparison is performed with the numerical results shown by Comini et all (1997). The contrasting 
study is carried out by considering a problem involving mixed convective heat transfer with the flow being 
bidimensional, laminar, and incompressible in the unsteady regime. In this case, some values are chosen such as Re=10, 
Pr = 0.67, and  Fr = 1/150. The grid has 4000 quadrilateral four-noded elements with ,0.1=∆x  15.0y=∆ , 01.0t =∆  and 
1000 iterations. Figure (4) displays the average Nusselt number on the upper surface versus time. After approximately 
iteration 500, the regime turns to be periodic with the average Nusselt number on the upper wall oscillating around a 
mean value of 2.44. This value agrees satisfactorily with the one found by Comini et all (1997) which is 2.34, resulting 
in a deviation of about 4%. 
 
 
 
 
 
 
 
 
 
  
                   
 
Figure 3. Geometry and boundary conditions for the second comparison. 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 4. Average Nusselt number Nu along the upper surface versus time for a Poiseuille flow heated from below. 
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4. Results 
  

Table (2) shows the non-dimensional parameters range for each case and the average Nusselt number found in each 
case. Such range is featured by taking the Froude number to be 1/75, 1/150, and 1/300, and, finally, the Reynolds 
number to be 10 and 20. For all cases, the Prandtl number is kept Pr = 0.7. Once the Froude and Reynolds numbers are 
chosen, the Grashof numbers are calculated and ranges between the values 7500 and 120000. 

These cases are performed by taking different time steps, for instance, t∆ = 0.01 (cases 1 and 2), t∆ = 0.005 (cases 
3 and 4), t∆ = 0.002 (case 5) e t∆ = 0.0015 (case 6), and different iteration numbers such as 10000 (cases 1 and 2), 
14000 (case 3), 20000 (case  4), 65000 (case 5), and 75000 (case 6). Figure (5) presents the temperature distribution 
along the channel for all the cases from Table (2). It can be observed that the isotherms behave in a repeated way along 
the channel characterizing thermal cells that have their size larger as Re increases and Fr decreases. These thermal cell 
enlargements are related to a more intense heat exchange along the wall, as can be noticed in Fig. (5) and, hence, higher 
Nusselt numbers. This effect is clear in Fig. (6), where the average Nusselt number on the cold wall is plotted by 
ranging the Froude number and keeping Re = 10 and 20 for each set of cases, and Pr = 0.7 for all of them. 

 
Table 2. Values of the parameters Fr, Re, Gr, and the average Nusselt number on the upper wall for the cases studied. 
 
 

 Pr Fr Re Gr Nu 
Case 1 0.7 1/75 10 7500 2.0485 
Case 2 0.7 1/150 10 15000 2.4824 
Case 3 0.7 1/300 10 30000 2.6981 
Case 4 0.7 1/75 20 30000 2.8447 
Case 5 0.7 1/150 20 60000 3.1655 
Case 6 0.7 1/300 20 120000 3.2585 

 

 
Figure 5. Temperature distribution along the channel with Fr, Re,  and Gr ranging, respectively, from 1/75, 10,  and 
7500 to 1/300, 20, and 120000. 
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Figure 6. Average Nusselt number along the cold wall versus Froude number. 

 
Figure 7. Velocity  and temperature cells with Fr, Re, and Gr ranging, respectively, from 1/75, 10, and 7500 to 1/300, 
20, and 120000. Just part of the length is shown here. 
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As mentioned before, it can be seen in Fig. (7) that the thermal cells get bigger as Fr decreases and Re increases. It 
can be observed clearly the closer approximations of the isotherms near the upper wall in each cell mean region. On the 
other hand, the same isotherm pattern is reached on the bottom wall but between two thermal cells. In these two regions, 
one can find bigger local temperature gradients, hence featuring higher local rates of heat transfer. It is noticed that in 
cases 1, 2, and 3 that as Fr decreases, the isotherms get even closer in the regions just mentioned before. The same thing 
happens for each pair of cases such as 1 - 4, 2 - 5, and 3 – 6. Taking as reference the recirculation cell size of case 1, the 
ones in cases 2 and 3 are 20% and 60% bigger, respectively. Moreover, if the recirculation cell size of case 4 is now 
taken as reference, the ones in cases 5 and 6 are about 55% and 145% larger, respectively. Such behavior is also found 
to be true for the thermal cells. Noticeably, case 6 is the one that brings the highest Nusselt number featuring its main 
flow giving place to the secondary flow. The recirculation cells expand horizontally and vertically forcing the main 
flow to pass through smaller passages. Then, flow is remarkably featured by the recirculation. Although it is not shown 
here and also being subject of future researches, it is important to mention the fact that the fluid flow development is 
characterized by the recirculation cells rolling downstream the channel.  

Figure (8) pictures the average Nusselt number along the upper and bottom surfaces for the case 5, where Fr = 1/50, 
Re = 20, and Pr = 0.7. This case is performed by taking 100000 iterations with a time step t∆ = 0.002. The periodic 
regime is reached when t is around 65. It is highlighted that each behavior follows the same pattern and that the mean 
values for each curve is close to each other around the value of 3.2. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
     

 t 
Figure 8. Average Nusselt number Nu measured along the upper and bottom surfaces versus time for the case 5. 
 
5. Conclusions 
 
  In this work it is studied the mixed convection heat transfer in a backward facing-step heated from below. The 
flow is considered to be laminar and incompressible in the unsteady regime, although the results are presented in the 
steady regime. At the inlet, the flow has a fully developed parabolic velocity profile and a linear temperature variation. 
It was verified the influence of Froude number (1/75, 1/150, 1/300) and Reynolds number (10 and 20) on the process by 
keeping Pr = 0.7 throughout the study. For all the cases studied, a grid having 6000 four-noded elements was used to 
discretize the computational domain. The numerical method used was the Petrov-Galerkin with the Penalty formulation. 
As expected, the Nusselt number increased as Reynolds number increased. For the most critical case, number 6, where 
Fr = 1/300, Re = 20, and Gr = 60000, the heat transfer flow was mainly characterized by stronger recirculation cells. 
Both the thermal and recirculation cell sizes for the case 3 (Fr = 1/300, Re = 10, Gr = 30000) and case 6 (Fr = 1/300, Re 
= 20, Gr= 120000) had their sizes increased for more than 100% according to their references cases such as case 1 
(1/75, Re=10, Gr = 7500) and case 4 (1/75, Re = 20, Gr = 30000), respectively. 
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