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Abstract. For the SUPG formulation of inviscid compressible flows, we present stabilization parameters defined based
on the edge-level matrices and the degree-of-freedom submatrices of those edge-level matrices. In performance tests we
compare these stabilization parameters with the ones defined based on the element-level matrices. In both cases the
formulation includes a shock-capturing term. We investigate the difference between updating the stabilization and shock-
capturing parameters at the end of every time step and at the end of every nonlinear iteration within a time step. The
formulation also involves activating an algorithmic feature that is based on freezing the shock-capturing parameter at its
current value when a convergence stagnation is detected.
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1. Introduction

In finite element flow computations, stabilized formulations such as the streamline-upwind /Petrov-Galerkin
(SUPG) Hughes and Brooks, 1979; Tezduyar and Hughes, 1982; Tezduyar and Hughes, 1983 and pressure-
stabilizing /Petrov-Galerkin (PSPG) Tezduyar, 1991 formulations are widely used because of their well-pro-
nounced advantages. The SUPG formulation for incompressible flows was first introduced in Hughes and
Brooks, 1979. The SUPG formulation for compressible flows was first introduced, in the context of conservation
variables, in Tezduyar and Hughes, 1982; Tezduyar and Hughes, 1983. After that, several SUPG-like methods
for compressible flows were developed. Taylor—Galerkin method Donea, 1984, for example, is very similar,
and under certain conditions is identical, to one of the SUPG methods introduced in Tezduyar and Hughes,
1982; Tezduyar and Hughes, 1983. Another example of the subsequent SUPG-like methods for compressible
flows in conservation variables is the streamline-diffusion method described in Johnson et al., 1984. Later,
following Tezduyar and Hughes, 1982; Tezduyar and Hughes, 1983, the SUPG formulation for compressible
flows was recast in entropy variables and supplemented with a shock-capturing term Hughes et al., 1987. It
was shown in LeBeau and Tezduyar, 1991 that the SUPG formulation introduced in Tezduyar and Hughes,
1982; Tezduyar and Hughes, 1983, when supplemented with a similar shock-capturing term, is very comparable
in accuracy to the one that was recast in entropy variables. The PSPG formulation for the Navier—Stokes
equations of incompressible flows, introduced in Tezduyar, 1991, assures numerical stability while allowing us to
use equal-order interpolation functions for velocity and pressure. An earlier version of this stabilized formulation
for Stokes flow was reported in Hughes et al., 1986.

A stabilization parameter that is almost always known as “7” is embedded in the SUPG and PSPG formu-
lations. This parameter involves a measure of the local length scale (also known as “element length”) and other
parameters such as the local Reynolds and Courant numbers. Various element lengths and s were proposed
starting with those in Hughes and Brooks, 1979 and Tezduyar and Hughes, 1982; Tezduyar and Hughes, 1983,
followed by the one introduced in Tezduyar and Park, 1986, and those proposed in the subsequently reported
SUPG and PSPG methods. Here we will call the SUPG formulation introduced in Tezduyar and Hughes, 1982;
Tezduyar and Hughes, 1983 for compressible flows “(SUPG)s2”, and the set of 7s introduced in conjunction
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with that formulation “7,,”. The stabilized formulation introduced in Tezduyar and Park, 1986 for advection—
diffusion-reaction equations included a shock-capturing term and a 7 definition that takes into account the
interaction between the shock-capturing and SUPG terms. That 7 definition precludes “compounding” (i.e.
augmentation of the SUPG effect by the shock-capturing effect when the advection and shock-capturing direc-
tions coincide). The 7 used in LeBeau and Tezduyar, 1991 with (SUPG)ss is a slightly modified version of
Te2- A shock-capturing parameter, which we will call here “d,,”, was embedded in the shock-capturing term
used in LeBeau and Tezduyar, 1991. Subsequent minor modifications of 75, took into account the interaction
between the shock-capturing and the (SUPG)s, terms in a fashion similar to how it was done in Tezduyar and
Park, 1986 for advection—diffusion—reaction equations. All these slightly modified versions of 73, have always
been used with the same dy,, and we will categorize them here all under the label “75, \op”-

Recently, new ways of computing the 7s based on the element-level matrices and vectors were introduced
in Tezduyar and Osawa, 2000 in the context of the advection—diffusion equation and the Navier—Stokes equations
of incompressible flows. These new definitions are expressed in terms of the ratios of the norms of the relevant
matrices or vectors. They automatically take into account the local length scales, advection field and the
element-level Reynolds number. Based on these definitions, a 7 can be calculated for each element, or even
for each element node or degree of freedom or element equation. It was pointed out in Tezduyar and Osawa,
2000; Tezduyar, 2001 that the 7s to be used in advancing the solution from time level n to n + 1 (including
the 7 embedded in the “LSIC stabilization” term, which resembles a discontinuity-capturing term) should be
evaluated at time level n (i.e. based on the flow field already computed for time level n), so that we are spared
from another level of nonlinearity.

In Catabriga et al., 2002, the T definitions based on the element-level matrices were applied to the (SUPG)gs
formulation for inviscid compressible flows supplemented with the shock-capturing term involving d,,. These
concepts are extended in this paper to an edge-based implementation that was introduced in Catabriga and
Coutinho, 2002. We investigate the performance differences between updating the stabilization and shock-
capturing parameters at the end of every time step and at the end of every nonlinear iteration within a time
step. The formulation includes activating an algorithmic feature, which was introduced earlier and is based on
freezing the shock-capturing parameter at its current value when a convergence stagnation is detected.

2. Euler Equations

The system of conservation laws governing inviscid, compressible fluid flow are the Euler equations. These
equations, restricted to two spatial dimensions, may be written in terms of conservation variables U = (p, pu, pv,

pe), as
U;,+F,,+F,, =0 on Qx[0,T] (1)

where F,, and F, are the Euler fluxes given elsewhere Hirsh, 1992, €2 is a domain in IR? and 7T is a positive real
number. We denote the spatial and temporal coordinates respectively by x = (z,y) € Q and ¢ € [0,T], where
the superimposed bar indicates set closure, and I" is the boundary of domain Q. Here p is the fluid density;
u= (uz,uy)T is the velocity vector; e is the total energy per unit mass. We add to Eq. (1) the ideal gas
assumption, relating pressure with the total energy per unit mass and kinetic energy. Alternatively, Eq. (1)
may be written as,

U:+AU,+A,U,=0 on Qx][0,T] (2)

where A; =

%%’. Associated to Eq. (2) we have proper boundary and initial conditions.
3. Stabilized formulation and stabilization parameters

Considering a standard discretization of Q into finite elements, the (SUPG)g, formulation for the Euler
equations in conservation variables introduced by Tezduyar and Hughes, 1982 and Tezduyar and Hughes, 1983

is written as,
uh U
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where W" and U”, respectively the discrete weighting and test functions, are defined on standard finite element
spaces. In (3) the first integral corresponds to the Galerkin formulation, the first series of element-level integrals
are the SUPG stabilization terms, and the second series of element-level integrals are the shock-capturing
terms added to the variational formulation to prevent spurious oscillations around shocks. The shock-capturing
parameter, dy,, is evaluated here using the approach proposed by LeBeau and Tezduyar, 1991. We define the
following element-level matrices:
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The conventional finite element data structure associates to each triangle e its connectivity, that is, the mesh
nodes I, J and K. In the edge-based data structure each edge s is associated to the adjacent elements e and
f, thus to the nodes I, J, K and L, as shown in Fig. (1). Moreover, each element matrix can be disassembled
into its contributions to three edges, s, s + 1 and s + 2, with connectivities I.J, JK and K1, that is,

Figure 1: Elements adjacent to edge s, formed by nodes I'e J.
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where @ and x are 4 x 4 submatrices and 0 represents a 4 x 4 null matrix. Thus, all the contributions pertaining
to edge s will be present in the adjacent elements e and f. The resulting edge matrix is the sum of the
corresponding sub-element matrices containing all the contributions to nodes I and J, that is,
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where o and x also represent 4 x 4 blocks. Considering a conventional elementwise description of a given finite
element mesh, the topological informations are manipulated, generating a new edge-based mesh description.
We may arrive to the edge-based matrices by
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The submatrices defined above are,

1
sm! = scg'= 6 [(yKI + yIL)AZ + (r1x +IL1)AZ)] (1)
1
sm®> = scg’= 6 [(yJK +yLJ)AZ + (vxs + IJL)AZ} (12)
scpgl _ 81A2AZ =+ SQAZAZ + SgAzA;L + 84AZAZ (13)

scpg” = s1ALAL 4+ ssANAD + s, ADAL 4 s AVAL (14)
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In the equations above, A° and Af are, respectivaly, area of the e and f adjacents elements, I is the identity
matrix of order 4 and z;; = x; —xj, ¥i; =vi — Y4, 4,5 =1, J, K, L.

3.1. Computing 7 by edge matrix norms

We define the SUPG parameters from the edge matrices as given in Tezduyar and Osawa, 2000,
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where At is the time step, ||b|| = mazi<j<n,.{|01;] + |25 +- .-+ |bn.. j|}> Nce is the number of edge equations,
that is, the number of edge nodes times the number of degrees of freedom per node and r is an integer parameter.

3.2. Computing 7 by dof edge submatrix norms

We can calculate a separate 7 for each edge matrix degree of freedom. The resulting diagonal stabilization
tensor is,

Tu
TSUPG = . (17)
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where the subindexes (p,u, v, €) are the primitive variables. Each 7; can be to calculate by
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where At is the time step. ¢;, k; and &; are the submatrices of the edge matrices for each degree of freedom
i = p,u,v,e. Theses submatrices are defined by edge matrix coefficients. Lets a general degree of freedom be
denoted i and the corresponding edge submatrix b; can be given by,

if i=p then (p1,p2)=(1,5)

L bp171 bphg e bphg if i=u then (pl,pg) = (2, 6)
D= 1o bpo .e. bys where i i u  them  (p1,pa) = (3.7) (19)

if i=e¢e then (p17p2) = (4, 8)

The norms of these submatrices, used in Eq. (18), are computed by ||b;|| = mazi<j<n., {|bp, ;| + 1bps.;1}-
4. Numerical Results

In this section we compare results obtained using the element and edge data structures. Tolerance of
preconditioned GMRES algorithm is set to 0.1, the dimension of the Krylov subspace to 5 and the number of
multicorrections fixed to 3. All the solutions are initialized with free-stream values. The symbol 7, represents
7s calculated based on element-level and edge-level matrices. The symbol 74,¢ represents 7s calculated based
on the degree-of-freedom sub-matrices of the element-level and edge-level matrices.

4.1. Oblique Shock

The first problem consists of a two-dimensional steady problem of a inviscid, Mach 2, uniform flow, over a
wedge at an angle of —10° with respect to a horizontal wall, resulting in the occurrence of an oblique shock
with an angle of 29.3° emanating from the leading edge of the wedge, as shown in Fig. (2).
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Figure 2: Oblique shock - problem description.

The computational domain is the square 0 < z < 1 and 0 < y < 1. Prescribing the following flow data at
the inflow, i.e., on the left and top sides of the shock, results in the exact solution with the flow data past the
shock:

= 2.0 M = 1.64052
p = 1.0 p = 1.45843
Inflow {u; = cosl0® Outflow <u; = 0.88731 (20)
uy = —sinl0Q° uy = 0.0
p = 0.17857 p = 0.30475

where M is the Mach number, p is the flow density, u; and wus are the horizontal and vertical velocities
respectively, and p is the pressure.

Four Dirichlet boundary conditions are imposed on the left and top boundaries; the slip condition uy = 0
is set at the bottom boundary; and no boundary conditions are imposed on the outflow (right) boundary. A
20 x 20 mesh with 800 linear triangles and 441 nodes is employed.

Table 1: Oblique shock - Computational costs (in number of time steps, GMRES iterations and CPU seconds)
for iteration update and time-step update (both with freezing shock-capturing parameter) - using 7, and 74,f
- element-level and edge-level.

Tteration update
Data Ty Tdof
structure | Nevres | Nsteps | time(sec) | Namres | Nsteps | time(sec)
Fdge 4,162 797 84 4,088 787 88
FElement 4,287 846 149 4,902 833 97
Time-step update
Data Ty Tdof
structure | Naymres | Nsteps | time(sec) | Namres | Nsteps | time(sec)
FEdge 4,845 833 85 4,965 822 87
FElement 4,246 838 145 4,857 819 93

Figures (3-4) and Table (1) show the performance of 7, and 74,y based on both the element-level and
edge-level approaches.

4.2. Reflected Shock

This two-dimensional steady problem consists of three regions (R1, R2 and R3) separated by an oblique
shock and its reflection from a wall, as shown in Fig. (5). Prescribing the following Mach 2.9 flow data at the
inflow, i.e., the first region on the left (R1), and requiring that the incident shock to be at an angle of 29°, leads
to the exact solution (R2 and R3):

M = 29 M = 23781 M = 1.94235
p = 10 p = 17 p = 2.68728

R1{ wg = 2.9 R2{ w1 = 261934 R3{ w = 2.40140 (21)
u, = 0.0 uy = —0.50632 u = 0.0

p = 0.714286 p = 1.52819 p = 2.93407
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(a) Density profile at = 0.9 - iteration update. (b) Density profile at = 0.9 - time-step update.
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Figure 3: Oblique shock - solutions and residual with iteration update and time-step update (both with freezing
shock-capturing parameter) - using 7, - element-level and edge-level.
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Figure 4: Oblique shock - solutions and residual with iteration update and time-step update (both with freezing
shock-capturing parameter) - using 74,5 - element-level and edge-level.
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Figure 5: Reflected shock - problem description.

We prescribe density, velocities and pressure on the left and top boundaries; the slip condition is imposed on
the wall (bottom boundary); and no boundary conditions are set on the outflow (right) boundary. We consider
an unstructured mesh with 1,837 nodes and 3,429 elements covering the domain 0 <z < 4.1 and 0 <y < 1.

(c) Density contours with 74,5 parameter with (d) Density contours with 74,5 parameter with
iteration update. time-step update.

Figure 6: Reflected shock - density computed with iteration update and time-step update (both with freezing
shock-capturing parameter) - using 7, and 74,5 - edge-level.
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(c) Density contours with 74,5 parameter with (d) Density contours with 74, parameter with
iteration update. time-step update.

Figure 7: Reflected shock - density computed with iteration update and time-step update (both with freezing
shock-capturing parameter) - using 7, and 74,¢ - element-level.

Figures (6-9) and Table (2) show the performance of 7, and 74, based on both the element-level and
edge-level approaches.

5. Concluding remarks

We highlighted, for the SUPG formulation of inviscid compressible flows, stabilization parameters defined
based the edge-level matrices and the degree-of-freedom submatrices of those edge-level matrices. These def-
initions are expressed in terms of the ratios of the norms of the relevant matrices, and take automatically
into account the flow field, the local length scales, and the time step size. By inspecting the solution qual-
ity and convergence history, we compared these stabilization parameters with the ones defined based on the
element-level matrices. In both cases the formulation includes a shock-capturing parameter. Also by inspecting
the solution quality and convergence history, we investigated the performance difference between updating the
stabilization and shock-capturing parameters at the end of every time step and at the end of every nonlinear
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Figure 8: Reflected shock - residuals with iteration update and time-step update (both with freezing shock-
capturing parameter) - using 7, - element-level and edge-level.
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Figure 9: Reflected shock - residuals with iteration update and time-step update (both with freezing shock-
capturing parameter) - using 74, - element-level and edge-level.

Table 2: Reflected shock - Computational costs (in number of time steps, GMRES iterations and CPU seconds)
for iteration update and time-step update (both with freezing shock-capturing parameter) - using 7, and 74,f
- element-level and edge-level.

Tteration update
Data Ty Tdof
structure | Nogmres | Nsteps | time(sec) | Namres | Nsteps | time(sec)
Edge 10,237 | 787 500 96389 | 867 544
FElement 9,127 844 948 9,138 845 584
Time-step update
Data Tg Tdof
structure | Neyris | Nsteps | time(sec) | Napres | Nsteps | time(sec)
Edge 11,161 | 846 544 9,133 | 862 528
FElement 9,913 893 984 9,278 817 579




iteration within a time step. The formulation also involves activating an algorithmic feature that is based on
freezing the shock-capturing parameter at its current value when a convergence stagnation is detected. We
observe that in all cases the solution qualities are very comparable. In terms of computational efficiency, T
definitions based on the element-level matrices are responding better to using degree-of-freedom submatrices
(in place of full matrices) than the definitions based on the edge-level matrices. As it was observed earlier, the
edge-based implementation is computationally more efficient than the element-based implementation. However,
this advantage is less pronounced for the degree-of-freedom submatrices than it is for the full matrices.
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