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Abstract. This work studies a Newtonian fluid flow through a cylindrical shell rigid porous matrix and the heat transfer associated
phenomenon, in order to build a preliminary local description for nonisothermal flows through an unsaturated wellbore. The model
is built in by using a mixture theory approach – the mixture consisting of three overlapping continuous constituents, representing
the porous matrix (solid constituent), the Newtonian fluid (liquid constituent) and an inert gas included to account for the
compressibility of the mixture as a whole. This problem mathematical description is given by a set of four nonlinear partial
differential equations. A forced convection hypothesis is assumed and the hydrodynamic part – approximated by means of a Glimm's
scheme, combined with an operator splitting technique is used as input for the thermal part – simulated by a finite difference
scheme. Some examples illustrate the proposed strategy.
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1. Introduction

Among the practical applications of transport phenomena in porous media, groundwater flows, enhanced oil
recovery processes, contamination of soils by hazardous wastes, storage of nuclear waste material in deep earth rock
layers or deep ocean sea beds and pollution movement, could be mentioned. The increasing interest related to such
phenomena may be explained by the importance attached to problems that impact the energy self-sufficiency and the
environmental state. Transport phenomena in unsaturated porous media are characterized by a strong dependence of the
motion on the saturation. Since the media are partially saturated, there is a force (depending on the saturation gradient)
giving rise to a fluid flow. According to Tien and Vafai (1990), these phenomena have been studied since the 1920s,
emphasizing momentum transport. The drying phenomenon was simulated supposing the fluids motion through the
porous medium caused by diffusion only – the balance of linear momentum being substituted by the diffusion equation.
In other studies the influence of capillary forces (surface tension) in the modeling of liquid motion has also been
considered.

This work studies the dynamics of the filling up of a rigid cylindrical shell porous matrix by a Newtonian fluid and
the heat transfer associated phenomenon, in order to build a preliminary local description for nonisothermal flows
through a wellbore, using a mixture theory approach in the mechanical modeling. This approach, assuming the mixture
composed by superimposed continua, is a convenient framework for modeling multicomponent systems – being
supported by a local theory with thermodynamic consistency which generalizes the classical Continuum Mechanics.
The mixture – modeling the unsaturated porous medium – consists of three overlapping continuous constituents: a solid
(porous medium), a liquid and an inert gas (accounting for the compressibility of the mixture as a whole). Another
approach is employed for treating most problems dealing with transport phenomena in porous media – a volume
averaging technique – in which concentration and velocity components are described as volumetric averages in order
that the momentum transport may be described in a classical continuum mechanics context. This approach has already
allowed the analysis of complex problems, among which one could mention, for instance, the multiphase transport
process with phase change in unsaturated porous media (Vafai and Whitaker, 1986), or the mixed convection (Aldoss et
al., 1996; Chang and Chang, 1996; Chen et al., 1996). A comparison among different models for transport in porous
media employing a volume averaging approach is found in Alazmi and Vafai (2000).

In most cases, an accurate mathematical modeling of real problems involving transport phenomena gives rise to
nonlinear systems of partial differential equations. Numerical strategies to deal with these problems, such as finite
element and finite difference methods, after performing a convenient discretization lead to algebraic systems of
equations. In the present work a distinct approach – specifically built to deal with nonlinear hyperbolic systems – is
employed.
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Assuming a one dimensional geometry, a set of four nonlinear partial differential equations describes the problem
which, supposing a forced convection flow, is simulated by considering the hydrodynamic problem approximation as an
input for the thermal one. The hydrodynamic problem – simulating a radial flow through a porous cylindrical shell,
consists of a nonlinear hyperbolic system of two partial differential equations, whose unknowns are the fluid constituent
velocity and the saturation – all functions of the position and time. This nonlinear hyperbolic system, which may
present discontinuities in addition to classical solutions, is approximated by combining Glimm’s scheme – specially
designed to deal with discontinuous problems, which consists of performing time evolutions by solving a certain
number of associated Riemann problems between each two consecutive steps – and an operator splitting technique to
account for the non-homogeneous part of the hyperbolic operator. Once an approximation for the hydrodynamic
problem at a given time instant tn+1 is known, a finite difference implicit scheme with staggered grids is employed to
approximate the thermal problem – namely the determination of the fluid (liquid) and the solid constituents’
temperatures at tn+1.

2. Mechanical modeling

Considering a chemically non reacting continuous mixture of a rigid solid constituent at rest, a liquid constituent –
from now on denoted as fluid constituent and an inert gas playing the role of the third constituent (accounting for the
mixture compressibility), it suffices to solve mass and momentum balance equations for the fluid constituent. It is
important to emphasize that although the fluid (a liquid) is assumed incompressible, the fluid constituent is
compressible, its compressibility being accounted for by presence of the inert gas coexisting inside the pores with the
liquid. The fluid constituent mass balance is given by (Atkin and Craine, 1976; Rajagopal and Tao, 1995)
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ρ
ρ
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∂
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in which Fρ  stands for the fluid constituent mass density – representing the local ratio between the fluid constituent

mass and the corresponding volume of mixture and Fv  is the fluid constituent velocity in the mixture. The balance of
linear momentum for the fluid constituent is given by (Atkin and Craine, 1976; Rajagopal and Tao, 1995)

( )F
F F F F F F Ft

ρ ρ
∂ + ∇ = ∇ ⋅ + + ∂ 

v
v v T m b (2)

where FT  represents the partial stress tensor – analogous to Cauchy stress tensor in Continuum Mechanics – associated

with the fluid constituent. The body force is represented by Fb  while Fm  is the momentum supply acting on the fluid
constituent due to its interaction with the remaining constituents of the mixture. This momentum source arises from the
possible existence of n distinct velocity fields in a mixture of n constituents at each spatial point and any time instant,
allowed by the mixture theory, which requires the net momentum supply to the mixture due to all the constituents to be

zero: 
1

0
n

ii=
=∑ m . The balance of angular momentum is satisfied through an adequate choice of FT , being

automatically fulfilled whenever the partial stress tensor is assumed symmetrical.

Figure 1. Problem statement: Cylindrical shell porous matrix.

Once thermal nonequilibrium among the constituents is allowed, both the fluid and the solid constituents must
satisfy the conservation of energy – only the gas constituent is not required to fulfill the balance equations for being an
inert gas. The energy balance is given by (Atkin and Craine, 1976; Rajagopal and Tao, 1995)
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where the fluid and the solid constituents’ temperatures are given, respectively, by FT  and ST , the partial heat fluxes –

analogous to the heat flux vector in Continuum Mechanics – associated with the fluid and the solid constituents by Fq

and Sq  and the external heat supplies to the fluid and the solid constituents are denoted by Sr  and Fr . Also Sρ
represents the solid constituent mass density (the local ratio between the solid constituent mass and the corresponding
volume of mixture), FD  is the symmetrical part of F∇v  tensor and sc  and fc  stand for the solid and the fluid specific

heats – measured in a Continuum Mechanics context. Thermal nonequilibrium among the constituents leads to the
possible existence of n distinct temperature fields at each spatial point for an n-constituents’ mixture – giving rise to
internal heat sources – namely the fields FΠ  and SΠ . More specifically, FΠ  and SΠ  represent, respectively, the fluid
constituent and the solid constituent interaction with the remaining constituents of the mixture – expressing an energy

transfer per unit time and unit volume. Since the energy sources are internal contributions, it comes that 
1

0
n

ii=
Π =∑

(Martins-Costa at al, 1993).
The saturation ψ  is defined as the ratio between the fluid fraction ϕ  and the porous matrix porosity ε :
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in which fρ  is the actual mass density of the fluid – regarded as a single continuum, in contrast to Fρ , defined as the

fluid constituent mass density.
The momentum source term – accounting for the dynamic interaction among the constituents, in a mixture

representing the flow of an incompressible Newtonian fluid through an unsaturated porous matrix is given by the
following constitutive relation (Williams, 1978; Saldanha da Gama and Sampaio, 1987):
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where fµ  represents the fluid viscosity (measured considering a Continuum Mechanics viewpoint), K  the porous

matrix specific permeability and D  a diffusion coefficient – analogous to the usual mass diffusion coefficient.
An analogy with the stress tensor acting on an incompressible Newtonian fluid within a Continuum Mechanics

framework probably led Williams (1978) to consider the partial stress tensor acting on the fluid constituent as being
proportional to the pressure acting on it and to the gradient of its velocity. A constitutive relation analogous to the
usually employed for Cauchy stress tensor with such a behavior was then obtained. A further simplification has been
later proposed by Allen (1986), who concluded the normal fluid stresses – resulting from momentum transfer through
fluid drag on the porous matrix – were dominant over shear stresses and interphase tractions, leading to the following
approximated relation:

2 2
F pε ψ= −T I (6)

where p  is a pressure (assumed constant while the flow is unsaturated) and I  is the identity tensor.

The following constitutive relation for the partial heat flux, analogous to the classical Fourier’s law broadly
employed in a Continuum Mechanics approach is employed, accounting for all constituents’ temperatures, the thermal
conductivities as well as the mixture internal structure and kinematics (see Martins-Costa and Saldanha da Gama, 1996
and references therein):

( )                 1F f F S s Sk T k Tεψ ε= −Λ ∇ = −Λ − ∇q q (7)

in which Λ  is a positive valued parameter depending on the porous medium thermal properties and internal structure
and fk  and sk  represent the Newtonian fluid and the porous matrix thermal conductivities, measured in a Continuum

Mechanics context. It is remarkable that while the partial heat flux for the fluid constituent is proportional to the fluid
fraction ϕ εψ=  the solid constituent one depends on the porous matrix porosity ε .



The energy generation function iΠ  – an internal energy supply arising from the i-constituent thermal interaction
with the remaining constituents of the mixture – would be zero at a given point only if thermal equilibrium were
assumed. This function must reflect that any i-constituent receives energy from its interaction with the j-constituents at

a higher temperature and provides energy to those at a lower temperature, according to: ( )1
ˆn

i ij j ij
R T T

=
Π = −∑  (Costa

Mattos et al., 1995; Martins-Costa and Saldanha da Gama, 1996). In the particular mixture considered in the present
work, since the gas constituent is assumed inert, thermal interaction is only present between the fluid (liquid) and the
solid constituents of the mixture so that S F−Π = Π  (Martins-Costa et al., 1993) resulting in FS SFR R=  and giving rise
to:

( )F S FS S FR T TΠ = −Π = − (8)

in which FSR  is a positive-valued factor, which depends on spatial position, on both constituents' thermal properties and
on their velocities, accounting for the convective heat transfer.

3. One-dimensional approach

The non-isothermal radial flow in the draining process of a cylindrical shell porous matrix is now considered. A
one-dimensional approach is obtained by assuming that all the quantities depend only on the time t and on the position r
and that v is the only non-vanishing component of the fluid constituent velocity Fv . Under these assumptions the
balance equations (1)-(3) combined with saturation definition (equation 4) and the constitutive relations (5)-(8) give rise
to the following nonlinear system:
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Redefining a reference pressure 0p  as 
2

0 2
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= +  and introducing the following dimensionless quantities
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in which * e ir r r= −  with er  and ir  standing for the external and internal radii of the cylindrical shell matrix and 0T  is a
reference temperature, the nonlinear system (9) may be rewritten in a more convenient form as
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4. Numerical procedure

Considering the flow not affected by the thermal problem – the usually employed forced convection assumption, a
convenient procedure may be adopted. First the hydrodynamic problem stated in the first two equations of (11) is
solved, its approximation being subsequently used as input for the thermal problem stated in the last two equations of
(11). The numerical scheme consists in, starting from the fields ψ , u , Fθ  and Sθ  at nτ , obtain the approximations for

ψ  and u  at a successive time 1nτ + . These values are, in turn, used as input for the approximation of Fθ  and Sθ  at 1nτ + .

4.1 Hydrodynamic problem

This section presents an adequate scheme to obtain numerical approximations for the non-linear hyperbolic system
of partial differential equations described in the first two equations of (11). In order to achieve this goal, two ingredients
are combined: Glimm’s scheme – a reliable method whose accuracy is mathematically ensured (Glimm, 1965; Chorin,
1976) and an operator splitting technique, accounting for the non-homogeneous portion of the differential equations.
This procedure has already been used with success in other nonlinear hyperbolic problems. Examples are wave
propagation in fluids, gas flow in pipelines, filling-up of a porous matrix, wave propagation in a damageable elasto-
viscoplastic pipe, response of non-linear elastic rods, isothermal and non-isothermal flow of a Newtonian fluid through
an unsaturated porous matrix (see Martins-Costa and Saldanha da Gama, 2001 and references therein). Two important
features of Glimm’s method, which is derived from a theory whose mathematical formulation presents a solid
thermodynamic basis – expressed by the entropy condition (Smoller, 1983), deserve a special remark. First if the width
of the steps tends to zero the approximation obtained by Glimm’s method tends to the exact solution of the problem
considering its weak formulation. Another characteristic of this scheme is that it does not dissipate shocks, preserving
their magnitude (no diffusion being observed) and position. The admissible deviation from the correct position is of the
order of magnitude of the width of each step. It is also remarkable that the problems addressed in all these above
mentioned works, due to their hyperbolic nature, do not require boundary conditions, being basically initial value
problems (John, 1982).

4.1.1 Glimm’s scheme

Assuming, by convenience, F ψ≡  and G uψ≡  the hydrodynamic problem – essentially an initial value problem

subjected to a given data at nτ  – may be rewritten as
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in which ( )ˆ ,nF F ξ τ=  and ( )ˆ ,nG G ξ τ= .

Since the hyperbolic problem described by equations (12) is non-homogeneous, an operator splitting technique
(Martins-Costa and Saldanha da Gama, 2001) is employed. It consists of a decomposition of the operator presented in
(12) in such a way that the merely hyperbolic part of the operator is split away from its purely time evolutionary one.
The first step is to employ Glimm’s scheme to approximate the homogeneous problem associated to (12). Glimm’s
scheme consists in performing time evolutions by solving the associated Riemann problem – whose complete solution
is presented in Martins-Costa and Saldanha da Gama (2001) – between each two consecutive steps. So, in order to
obtain a the numerical approximation for the fields F  and G  at time 1nτ +  – denoted as 1 1 and  n nF G+ +  – the solution of
the Riemann problem associated with homogeneous part of (12) must be known. Essentially, the first step is to

approximate the initial condition by piecewise constant functions: ( ) ( )ˆ ˆ
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open interval ( 1/ 2,  1 / 2− + ) and ξ∆  is the width of each step ( 1i iξ ξ ξ+∆ = − ).
In the sequence, the associated Riemann problem, defined as:

2
2

                 0

0

F G

G G
F

F

τ ξ

τ ξ

∂ ∂
+ =

∂ ∂

 ∂ ∂
+ + = ∂ ∂  

with
( ) ( )

( ) ( )
1 1 1

, ,         for    ,   
2

, ,      for    ,   
2

i i

i i

n n n i

n n n i

F G F G

F G F G

ξ
τ τ ξ ξ

ξ
τ τ ξ ξ

+ + +

∆
= = − ∞ < < +

∆
= = − < < ∞

(13)



is solved for each two consecutive steps, allowing marching from time nτ τ=  to time 1n nτ τ τ+ = + ∆ . The

approximation for the homogeneous problem associated with (12) at time 1nτ + , for 1i iξ ξ ξ +< < , is finally reached,

being given by ( )1 1,  
in n nF F ξ τ+ +≈ %  and ( )1 1,  

in n nG G ξ τ+ +≈ % . The time step τ∆  must satisfy the Courant-Friedrichs-

Lewy condition (Smoller, 1983):
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preventing interactions among nearby shocks of adjacent Riemann problems and, consequently, assuring uniqueness for
the solution. The parameter 

max
λ  is the maximum (in absolute value) propagation speed of shocks, considering all the

Riemann problems at nτ . It is important to notice that the approximation obtained after each advance in time is no

longer a piecewise constant function, thus requiring a new random selection of nθ , in order to approximate the initial
condition for the next time step by piecewise constant functions.

4.1.2 Operator splitting technique

Once an initial approximation for the homogeneous problem associated with the first two equations of (12) is

reached by employing Glimm’s scheme, the numerical approximation for the solution at time 1nτ +  is then obtained by

advancing in time with the same time step τ∆  through the ordinary system. This procedure – which consists in
achieving an approximation for the solution ( ),F G  at time 1nτ τ += , is repeated until a specified simulation time is

reached. The numerical approximation for the solution at the time instant 1nτ τ +=  is finally reached by advancing in

time to solve the following problem, with the same step 1n nτ τ τ+∆ = − , through equations:
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The system represented in equation (15) could be rewritten in an appropriated form, by using the chain rule and
substituting the first equation in the second one, as
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Assuming non-zero velocity and saturation, since no splitting would be required if either / 0G F =  or 0F = , the
following ordinary equation is obtained

1dF
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= − (17)

Since 1/ξγ  may be treated as a constant for a given value of ξ , equation (17) admits an analytical solution given by
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in which 0F  and ( )0
/G F  refer to information obtained at the preceding time instant by employing Glimm’s method.

Appropriate substitutions give rise to the following analytical solution for the saturation and the velocity:
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4.2 Thermal problem

Once that an approximation for the hydrodynamic problem at time 1nτ τ +=  has been obtained for the solution

( ),F G  by employing the procedure described in item 4.1, the following implicit finite difference scheme is employed

to approximate the thermal problem – namely to determine Fθ  and Sθ  at 1nτ τ +=  for all ξ .
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5. Numerical results

Figure 2. Saturation, fluid constituent velocity and fluid and solid constituents’ temperatures variation with radial
position with 1FA = , 10SA = , 0.1FB = , 10SB =  and 1γ =  

with  (a): 0Fθ =  at iξ  and 1Fθ =  at eξ  and (b): 1Fθ =  at iξ  and 0Fθ =  at eξ .

Numerical results obtained for the approximation described in the previous section of the forced convection radial
flow through the cylindrical shell porous matrix depicted in Fig. (1) are now presented. The nonlinear system presented
in equation (11) is subjected to initial data given by distinct step functions for 0ψ  (from 1.0 to 0.05) and 0Fθ  (from 0 to

1.0) and constant values 0 0 0Su θ= =  as well as to the following boundary conditions
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Some selected results considering the influence not only of the diffusive terms’ coefficients AF and AS but also of
the internal source terms’ coefficients BF  and BS are presented in Figs. (2) to (4). Each considered case is presented in a
set composed by six lines and four columns of graphs. Each line represents a distinct time instant – the first one being
the initial condition, while each column corresponds to the behavior of a distinct variable – namely saturation, fluid
constituent velocity and fluid and solid constituents’ temperatures. All the depicted diagrams show at the left-hand side
( 0 iξ ξ= = ) the cylindrical shell porous matrix internal radius, and its external radius ( 1 eξ ξ= = ) at the right-hand side.
Besides, all the qualitative results shown were obtained by employing a convenient normalization, in such a way that
the minimum and maximum displayed values correspond to zero and unit values for ψ , u  and Fθ . In order that both

constituents’ temperatures are easily compared, Sθ  is displayed using the same scale employed for Fθ .
All depicted results have been obtained by employing Glimm’s scheme with 300 steps for each time advance.

Figure 3. Saturation, fluid constituent velocity and fluid and solid constituents’ temperatures variation with radial
position using 0Fθ =  at iξ  and 1Fθ =  at eξ ; 1γ =  with  (a): 1FA = , 10SA = , 0.1FB = , 1SB =  and

(b): 10FA = , 1SA = , 0.1FB = , 10SB = .

An important feature, present in all depicted results, is that the discontinuities for the variables ψ , u  and /Fθ ξ∂ ∂
are in the same spatial position, since the position of the jump for /Fθ ξ∂ ∂  must be the same position for the jump of
ψ .

Figure 2 shows two sets of results obtained with the same values of diffusive terms ( 1FA = , 10SA = ) and internal

heat source ( 0.1FB = , 10SB = ) coefficients considering distinct temperature profiles as initial data. In Fig 2a a step

function, characterized by 0Fθ =  at iξ . and 1Fθ =  at eξ  is assumed while in Fig. 2b 1Fθ =  at iξ  and 0Fθ =  at eξ .
The behavior of saturation and fluid constituent velocity remained unaltered in both cases, the variation being restricted
to solid and fluid constituents’ temperature profiles. The solid constituent temperature shows a more visible variation
with time in Fig. 2a (given by a decay whose intensity decreases with time evolution) than in Fig. 2b – the latter
presenting a very discrete increase.



The influence of some coefficients of the energy equations may be observed by comparing Fig. 3 to Fig. 2a. In Fig.
3a, 1SB =  (ten times smaller than its value in Fig. 2a). Comparing these two figures no variation is observed in the fluid
constituent temperature, while the solid constituent profile in Fig. 3a remains almost insensitive to time evolution.
Comparing Fig. 2a and 3b – in which both constituents diffusive term coefficients have been altered, with 10FA =  (ten

times greater than its value in Fig. 2) and 1SA =  (ten times smaller than all previously considered values), it may be
observed that the solid constituent temperature behavior is almost unaltered. On the other hand, an important variation
is observed in the fluid constituent temperature profiles.

Figure 4. Saturation, fluid constituent velocity and fluid and solid constituents’ temperatures variation with radial
position using 0Fθ =  at iξ  and 1Fθ =  at eξ ;  with  (a): 1γ = , 1FA = , 10SA = , 1FB = , 1SB =  and

(b): 10γ = , 1FA = , 10SA = , 0.1FB = , 10SB = .

The influence of the heat source coefficients in both constituents energy equations is observed by confronting Fig.
4a and Fig. 2a, the former obtained considering 1FB =  and 1SB = , respectively ten times greater and ten times smaller
than the values used in the latter figure. In Fig. 4a, the solid constituent temperature profile remains almost unchanged
with time evolution and the fluid constituent behavior shows a “damping effect” – when compared to Fig. 2a.

Figure 4b shows the influence of the so-called darcian term coefficient, which has been made ten times greater
( 10γ = ) than all the remaining depicted results. The slight distinct values for the depicted time instants are explained

by the fact that the time evolution is related to the Courant-Friedrichs-Lewy condition expressed by Eq. (14).
Comparing Fig. 4b and Fig. 2a, a barely noticeable change is observed in both Fθ  and Sθ  profiles while a strong effect
on saturation and fluid constituent velocity profiles is noticed, the latter one even more pronounced – showing a
damping effect at its discontinuity. The effect of making the darcian term coefficient ten times smaller ( 0.1γ = ) than

the value used to obtain Figures 2a to 4a is more pronounced in the fluid constituent velocity profile – with an increase
in its wave amplitude. Besides, a slight variation on the saturation and a barely noticeable change at both constituents’
temperatures are verified.

6. Final remarks

In this article a non-conventional numerical approach is used to study transport phenomena in an unsaturated
porous matrix. Its mathematical representation – namely a nonlinear system, whose numerical approximation is
performed by first solving the hydrodynamic problem and later using the obtained solution as input for the thermal
problem. The numerical methodology for approximating the hydrodynamic problem – combines Glimm’s scheme to an
operator splitting technique allowing the accurate approximation of a nonlinear and non-homogeneous system of partial
differential equations.



Glimm’s method, besides preserving shock waves magnitude and position, is a convenient tool for solving one-
dimensional nonlinear problems. It exhibits features such as low storage costs and low computational effort when
compared to other numerical procedures to approximate nonlinear problems – the complete simulation requiring circa
2.5 minutes CPU time in a Pentium III, 1200 MHz, 128 Mb RAM.
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