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Abstract. The present work provides a multidimensioanl interpolation method that will be applied in the interface fliud-structure for 
hydroturnines blades. The methodology proposed in this work firstly computes the fluid flow by unstructured finite volume method 
providing the pressure field in the boundary of the solid problem. This field is interpolated to a finite element mesh to determine the 
load applied and finally the structural problem is solved. The interpalation procedure should work with two meshes with different 
refinement levels and avoid the use of a gridiron layout, to attend this requisites a meshless interpolation approach will be adopted. 
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1. Introduction   
  

Hydro machinery industry has used in the last decades more intensely numerical analysis for the development of 
even more efficient turbines (Wichström, 1997; Carstens, 2002). This industry saw the application of finite volume 
method as the main tool for the flow simulation and finite elements for structural analysis, each one of these problems 
has its proper peculiarities. Turbulence models based on the Reynold mean equation like κ-ε and κ-ω are commonly 
applied in the study of the behavior of the fluid and fatigue model used for fail criteria for the structural analysis. Both 
the problems when applied for realistic cases with complex geometries are very computational expensive. With the 
constant and fast increase in the computer capacity more refined model are proposed, at this time hundreds of thousands 
or even millions of degrees of freedom problems are normally solved. 

A new problem begins to be explored last years with the consideration of the interaction between the fluid and the 
structure (Crolet, 1992). The level of sophistication of this interaction can vary, in the most expensive case only one 
problem is solved with the fluid and structure domains together. This is called the coupled case and since the fluid and 
the structural models differ in their formulation and discretization, an interface model has to be introduced that 
represents the connectivity and physical interaction. Normally this interface model makes possible integration in time of 
the governing equations (Beckert, 1999). 

A cheaper and simple technique adopted is solve the fluid and structural problem separately and use the solution of 
one problem as the boundary condition for the other problem. The load applied in the structural problem is interpolated 
from the pressure field calculated by the CFD code and using an iterative process the mesh used for the flow simulation 
can be updated by the displacements calculated in the solid analysis. 

For turbo machinery structural analysis fluid-structure interaction techniques are essential because the boundary 
condition for the solid problem comes from a very complex pressure field and the surfaces of the blades are irregulars. 
This problem can be found also in aeronautical application for airplane wings. This paper aims to use an interpolation 
process to solve a uncoupled fluid structure interaction. The full uncoupled process can by visualized in Fig. (1). 

The interpolation main task is determined the load applied in the solid mesh with the CFD nodes solution. For some 
situations this problem is contouring adjusting a function over the geometry with the boundary information needed, the 
difficult with this boarding arise from the restriction of the data fitting approximation and the laborious process 
involved. For a most automatic and robust process a mesh to mesh interpolation is desired. The interpolation process 
can be reached in many ways according to the mesh information available, the simplest case occurs when the 
connectivity information is know and the value of a node inside an element can be evaluated using conventional shape 
functions (Löhner, 2001). For the worse case where the connectivity matrix is not available and the only information are 
the nodes coordinates and the values to be interpolated a meshless approach is useful. A good interpolation algorithm 
must also deal with meshes with different refinement and local concentration of nodes, what is very common in fluid-
structure interaction. An alternative surface meshless approach based of boundary elements method can be found in 
(Ochiai, 2001). 
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Figure 1. Uncoupled fluid-structure interaction project sequence.  
 
2. Theory 
  
2.1. Turbulence Formulation 
  

For incompressible turbulent flows, the conservation of mass, and momentum can be expressed by the classical 
Reynolds averaged equations given by: 

 
0=⋅∇ U                                                                                                                                                                   (1) 

 

( ) ( )uuUUUU
⊗−∇⋅∇+∇−=∇+

∂
∂ ν

ρ
P

t
1

                                                                                                  (2) 

 
In those equations U, P are the mean velocity and pressure fields; ρ , ν  are the density and kinematics viscosity of 

the fluid; and uu⊗  is the Reynolds stress tensor modeled by the Boussinesq eddy viscosity assumption:  
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where Tν  is the turbulent eddy viscosity, )(UD is the mean rate-of-strain tensor, I  is the identity tensor and 

κ the kinetic energy of turbulence. 
The turbulent eddy viscosity is modeled by the Prandtl-Kolmogorov relation written as: 
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where ε  is the dissipation rate of kinetic energy. It is the basis of the classical εκ − model of turbulence. This 

model requires the use of two additional transport equations for κ and ε  given by: 
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In those equations kP  is the production of k which is written as: 
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The standard values of the constants are: 
 

09.0=µC ; 44.11 =εC ; 92.12 =εC ; 0.1=kσ ; 3.1=εσ  
 

2.2. Solid Formulation 
 
Turbines runner are normaly subjected to load fluctuation, the operational regime due diferent power generation 

requirements is the main source of this time fluctuation. Then to realistically predict structural integrity of turbine 
componets is necesary the application of fatigue models. These models could be very sofisticated and a entiry load 
period hystory necessary to predict the life of the component subject to fatigue. This work will consider the simplest 
cases of linear elasticity (Bathe, 1996; Ottosen, 1992), a sequence of linear problems are normaly used to determine 
stress and strain which are used in fatigue models.  

Equation (8) express the equilibrium condition (i.e. the balance priciple) for a infinitesimal peace of the body, the 
stress tensor S (9) is symmetric and represent stresses components inside de body, and b is due body forces. 
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For a arbitrari surface inside of over the body with normal n (10) represent the stress conponents acting in this 

surface.  
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For an isotropic and homogenius material with Young’s modulus E  and Poisson’s ratio ν  the constitutive relation 

expressed by Hooke’s law is given by (11-12). 
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The solid problem boundary conditions comes for a pressure component interpolated from the fluid solution, these 

pressure component is a scalar value equal to the modulus of the compression vector acting normal to the surface. To 
determine this vector the pressure component is multiplied by the surface unit normal vector (13). 
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2.3. Numerical fluid and solid solver. 
 
A finite volume commercial code (CFX) was used for solution of fluid flow, the implemented εκ −  model was 

used, and the boundary condition for the turbine problem was taken from index test flux and spiral casing geometry. 
For solid solution an in-house developed code using three dimensional linear elasticity was used. Linear tetrahedral 

elements with four nodes are used and an interactive conjugated gradient solver used.   
 

2.4. Interpolation Procedure. 
 
The interpolation )(xf of a function )(xf in a considered domain Ω can be defined by (14) where )(xjp is an 

independent vector with n  basis functions (Gavete, 2002; Krysl, 2001), usually the polynomials. For example in a three 
dimensional space different degrees of approximation basis are given by (15)  
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The coefficients ( )xa are determined by minimizing the sum of the square distances of the error at each point with 

respect to )(xa : 
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If the existence condition 0≠A is satisfied then: 
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In the above equations if is the nodal independent variable at the node )( ii xP , )()( iii ww xxx −= is a weight 

function, m the number of the basis functions, n the number of nodes in the influence domain Ω∈Ω l . The 

matrix A and its inverse 1−A  are symmetrical. This property can be utilized in the computation to reduce the 
computing time choosing an apropriete symmetrical solver like cholesk.  

The weight function w  used has a inportant fuction and must satisfy the following requirements: 
• It must be positive, continuous and differentiable in the influence domains. 
• It shoould have a relatively larger value for a node which is closer to the point being interpolated in the 

influence domain. 
For PDE numerical solver that use meshless methods weight functions have stabily importace (Du, 1998), for the 

interpolation process it increases the quality when gives a large weight for nodes close to the interpolation point. 



 
An Example of weight function are show below: 
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where md denotes the size of the support for the weight function, c is a positive parameter which control the 

relative weights. When c decreases, the nodes closer to the evaluation point have higher weights than those of far nodes. 
K is a constant 5.0≥ (Du, 1998). 

An spherical influence domain are choose classically, but for boundary values interpolation it could induce some 
problems, the main happen when try to interpolate values for two surfaces very close that have very diferent pressure 
value. Unfortunately this case is standart for turbines blades and airfoil see Fig. (2). Fig (3) show a semi-sphere domain 
and Cp profile over an airfoil.  

 

 
Figure 2. Sphere interpolation domain crosing thin trubine blade. 

 
A simple way to avoid this proble is choose a semi sphere influence domain that will take count only the points in 

the righ side of the blade fig. 3. 
 

(a)          (b)  
 
Figure 3. Semi-sphere interpolation domain over airfoil (a) and Cp distribuction for this airfoil (b).  
 
 
 
 
 



  

 
 
3. Numerical results. 
 
3.1. Wedge numerical example. 

 
In the first example a pure numerical case is explored, an imposed function is attributed to a solid mesh nodes with 

a wedge on its base Fig. (4a), than a secondary surface mesh that represents the solid boundary Fig. (4b) is interpolated 
using the values imposed for the first mesh. Finally the values find are compared with the analytical function.  

 

(a)          (b)  
 

Figure 4. Solid mesh representing flow problem and surface mesh representing structural boundary conditions. 
 
Both meshes have different grade of refinement and the nodes in the surface are not coincident, the solid mesh 

height and depth is 1 and the width is 3 the wedge has a 78.7° angle. A sine trigonometrical function was used because 
this function can’t be perfectly approximated by a polynomial function.   

 

(a)     (b)  

(c)   (d)  
 
Figure 5. Percentual error associated for four different polynomial approximation grades.  

 
The four figures above show a considerable reduction in the error ratio when the polinomial degree is increased, 

except that Fig. (5b) and Fig. (5c) although have the same polynomial degree have diferent errors, this is because the 
interpolation domain Ω is bigger inducing the consideration of points too far from the desired point. The choose of 
r has a great inportace, if r is choose small the condition of existence reePolyspoN deg_int_ >= can’t be 



 
satisfacted, if r is choose biger the influence domain could considerate points too far from the desired point. This 
problem is even worse if the mesh has diferent refiniment grades. For this reason a diferent approach will be used in the 
next two examples, althought use a fixed radius a fixed number of neighborhood point is used. 

 
3.2. Airfoil numerical example. 

 
The next example explores a more realistic case, an airfoil subjected to frontal water flow. Figure 6a shows the 

geometry of the airfoil, the tunnel has 3 meter height and 8 meter width; the airfoil has a 1m cord length. For the fluid 
domain a 3 m/s and relative 0 Pa boundary conditions are admitted. The solid proprieties are 2.1E9 Mpa Young 
Modulus and 0.3 Poisson’s ratio. The airfoil is constrained in the both sides.  

 

(a)    (b)  
 
Figure 6. Geometry and pressure distribution over airfoil.  
 

The fluid problem was simulated using the commercial code CFX using a 120000 nodes tetrahedral mesh with 
εκ −  model. Fig. (6b) shows the pressure field found.  The solid problem was solved with a 30000 nodes mesh and 

linear elasticity model. Fig. (7b-7d) shows the structural analysis results for displacement and critical stress. 
Interpolation was done with a fixed number of nodes in the interpolation domain because the meshes used have local 
refinements. A linear polynomial was used with 15 neighbor nodes in the influence domain.  

 

(a)    (b)  

(c)    (d)  
 

Figure 7. Mesh used, displacements and critical stresses over the airfoil. 
 
To evaluate the interpolation results the three force components are calculated by integration of the pressure over 

the faces and compared with the results forces given by CFX, Tab (1). 
 
 



  

 
Table 1. Comparison between total forces interpolated and calculated by CFX. 

 
 FX component  Fy component Fz component 

CFX 1450.25 N 10975.7 N -0.25 N 
Interpolated 1413.31 N 10985.7 N 21.56 N 

Error < 1% < 1% - 
 
The results show a good agreement between the interpolation and CFX code. The Fz component should be zero 

because the airfoil is symmetric so the value found is numerical garbage and can’t be compared.  
 

3.3. Kaplan Turbine Blade Example.  
 
This final example compares the quality of interpolation for a most realistically case. A complete turbine blade was 

simulated using CFX, Fig. (8) shows the values of pressure over the blade and Tab (2) shows the compared results for 
the total sustentation force.  

 

(a)    (b)  
 

Figure 8. Simulated pressure distribution for a turbine blade. 
 

Table 2. Comparison for different polynomial degree, nodes neighbors and interpolation domain. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table (2) shows the limitation for the interpolation process, for the geometries with thin parts like blades problems 

the half sphere interpolation domain is essential, and when the number of interpolation points is close to the number of 
polynomial terms the results can be very bad or the interpolation is impossible.  

The mesh used for the solid simulation and the critical stress is show in Fig (9). 
 
 
 

Polynomial  
degree 

Nodes 
Number Half sphere FY[N] Error % 

CFX - - -5345.73 - 
0 1 Y -5342.39 < 1% 
0 3 Y -5319.66 < 1% 
0 1 N -3781.45 29% 
1 10 Y -5319.22 < 1% 
1 20 Y -5288.19 < 2% 
1 5 Y -14520.1 171.6% 
1 4 Y Overflow - 
1 10 N -2418.55 54% 
2 20 Y -5345.29 < 1% 



 

(a)    (b)  
 

Figure 9. Solid mesh and critical stresses for the blade simulation. 
 

4. Comclusion 
 
The problem of interpolation from a tree dimensional mesh for a surface boundary mesh can be satisfactory and 

flexible solved using meshless methods, some attention need be give for the interpolation domain when applied for a 
thin body but this problem is perfectly turned around by using a semi sphere domain. The other problem observed is the 
radius choose when the mesh have different refinement level, this problem are turned around using a fixed number of 
interpolation points. A flexible algorithm for interpolation has great value for fluid-structure application and mesh less 
approach can handle real world problems. 
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