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Abstract. Thiswork presents a Boundary Element formulation solution to transient heat conduction in axisymmetric problems. In the
methodology employed here the three-dimensional variables are transformed into two-dimensional ones through the Fourier Series
procedure. An expansion in the angular spacial coordinate is made and the fundamental solution is integrated on the
circumpherential direction resultingin a set of two-dimensional harmonic components, associated to each term of the Fourier Series.
In the approach, the bodies can be submitted to general and arbitrary boundary conditions. The Dual Reciprocity Techniqueis used
to transform the domain integral related to the transient effect into boundary integrals. Thus, the well-known features of the
Boundary Element Method are sustained: the discretization is limited to the boundary of the revolution section and high accurate
levels are obtained with reative few numbers of nodal points. The time marching process is implementd through the central Finite
Difference scheme, where temperature and flux are calculated simultaneously in each time step of the transient response.
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1. Introduction

The application of the Boundary Element Method (BEM) to axisymmetric problems is very advantageous. Using
axyssimetric fundamental solution for the integration of threedimensiona problems, BEM produces a very concise
numerical model with reduced inpu data and low computational cost. Many reseachers sudied and proposed
procedures to further improve the BEM application in this field, spedally by producing very accurated numerical
results. An elaborated review about this matter can be obtained in Kitbee (1995 and Brebhia et a (1984). Just to do
mention a few of the most important authors, Rizzo and Shippy (1980, Cisternas, Tdles and Mansur (1986) and
Provatidis (1998) gave important contributions to stationary axisymmetric analysis. From them many ideas were used to
elaborate this work.

It is very logical to take advantage of this features of the Boundary Element model to transent axisymmetric
analysis. Wrobel at a (1985) was the firs to approach this problem. His pionee model, however, is gedfic to
axisymmetric boundary conditi ons and few informations were given in his paper about the interesting numerical aspeds
that can arise on this subjed.

In this work a most general formulation is presented, which allows to examinate axisymmetric bodies submited to
boundary conditions without symmetry. Some of the several numerical features are exposed, mainly related to suitable
time steps and poles effeds. An important point, related to the behavior of solution in the initiad period of transent
response, is discussed. Two basic examples are solved. More general cases could not be presented by space limitations
and absence of analytical solutions to evaluate the accuracy, which would request other numericd solutions for
comparison, such as Finite Element solutions.

2. Mathematical M odel

The physical problem related to the transient heat conduction in a homogeneous and isotropic mediais governed by
the foll owing partid differential equation:

KDO2u=u @

In this last equation K is the thermal conductivity, u is the temperature, 0% is the Laplacian operator and the dot
means time derivative. Essential and natural boundary conditi ons can be prescribed on time respedively by Eq. (2) and
Eqg. (3), showed below:

u(X,t)=u(t) on r, t>0 @)
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q(X,t):%:a(t) on I, t>0 A3)

In Eq. (2) Ty isthe part of the boundary where essntial conditions are prescribed. Complementary in Eq. (3) T
represents the part of the boundary where natural conditions are known. X represents the three dimensional coordinates
(x,y,2) and nis the external normal on the boundary. The time dependency of the transient problem requests initial
conditionsin whole physical domain Q(X), that is:

u(X,t) =u(X,0) =uy(X) XOQ 4
3. Boundary Integral Formulation

The starting point of the BEM formulation can be given by the stablishment of the integral sentence using the
fundamental solution u* asan auxiliary function, that is:

KlDzuu*dQ:£Uu*dQ )

The Dua Redprocity approach implies that the fundamental solution u* corresponding to the stationary diffusive
problem, given by Poisson equation, must be used:

O2u* = —=A(E; X) (6)

In Eq. (6) A(E; X) isthe Dirac delta function, which represents a point source d X=¢§. In threedimensions, u* is:
1
u*(§:X)=— 7
(€:X) roes ™

It is necessary to transform the Eq. (5) into an inverse integral form. Congdering initially the left hand side of this
equation, the mentioned purpose is easily achieved with the use of Green's theorems and integration by parts. The
following integral equation results:

*dr — * 2% Y
K[J'r ug*dr J'rqu dr +J'QD u* udQ] J'Quu dQ )
Where g* is given by:

g =0u% (©)

Substituing Eq. (6) into Eq. (8) it has:

K[ ug*dr - [ qu* dr ~ c(€)u(®)] = [uu*do (10)

The coeficient ¢(€) isrelated to the position of source point & in the domain Q(X). Brebbia et a (1984 offer more
detail s about this sibjed.

4. Transformation to Axisymmetric Variables
It is important to use anew sistem of coordinates more suitable to describe the geometric shape of axisymmetric

bodies (seeFig. 1). Cylindrical coordinates (R,8,2) are the natura choicefor this case. The radia disgancer(¢;X) must
be redefined in cylindricd coordinates, that is:

r(&X) =[cZ +Cf —2¢,Gg cOS@, —0¢) + (2, —2¢)]"'? (19

For convenience the previous expresson can be expressed by foll owing sentence



r=Ry/1-M?2 cos?(8; /2) (12)

Where:

R=+a+b (13)
a=¢i+¢k +(zg —2,)? (14)
b=2¢,Ge (15)
M2 = 4?_:;5 (16)
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Figure 1. Cylindrical coordinates for an axisymmetric body.

The methodology employed in this paper uses the complex Fourier series. A simple axisymmetric anayss, in
which the boundary conditions are also axisymmetric, did not request this tool. However, the procedure showed hereis
very general, allowing the approach of cases where the variable field is arbitrary. Therefore, the temperature and radial
distance must be devel oped as a sequence of Fourier harmonics, that is:

U= Aler 2" (17)
u(x) = 2} B,(p,.z,)e™ (18)
r(fl,x):ic“(p"zf;p“z“ef)éng{ )
In these last equationsi means the complex unity. The coefficients A, B, and C,, can be obtained by:

Alpe2)= 5 [ e do (20
B,(p,.2,) = %iu(x)e‘"‘*dex (21)
Cn(pfv%:px.a.ex)=2inir(gx)e*rﬂfdef 22)
Substituing the equations (20), (21) and (22) into Eq. (10) comes.

C(E)u(E)+%_Jr* B, HL ,dr* —%Jr* Hn a:n“ dr* = —4—1T[LBandQ (23)



Where:

dr* =p,dr (24
T[ .
Hn(pz,zz;px,zx):ICn(pE,ZE;pX,zx,ex)e'”eXdex (25)
-1t
Tt a )
HLn(pE,zE;px,zx):I%Cn(pz,zz;px,zx,Gx)e'”eXdex (26)
-1t

At this point, the integral equation is a function of Fourier coefficients A, B, and C,. The complete solution is
achieved by superposition of al terms of the series. However, it is necessry to simplify the integral eguetion by
dimination of common terms involving complex powers and to process the anguar integration of axisymmetric
fundamental solution anditsnormal derivative to each harmonic n. Thisvery cumbersome task can be found in Manfré
et a (2002. Many procedures may be used to solve the resulting elyptic integrals. In this paper Gauss quadrature is
employed, taking advantage of its smpli city and goad efficiency, according to Cisternas (1986.

5. Dual Reciprocity Procedure

In theright hand side of Eq. (23) existsa domain integra involving a time derivative of temperature. The use of the
Dual Redprocity approach alows to diminate this domain integral by transforming it onto baundary integrals. For sake
of simplicity, the threedimensiona form of the domain integral, contrary to axisyimmetric form, must be mnsidered.
After the Dual Redprocity procedures the axisymmetric integral equation can be taken again.

To implement thistechnique it is necessary to make initiall y the foll owing aproximation in atemperature field:

U(X,t) = i al()FI(X) (27)
=1

This technique is smilar to the separation of variables method; however, it uses a finite number of auxiliary
functionso’ and P, defined in some points X!, that can result in lossof accuracy. The main feature of Dual Redprocity
consists to find a primitive function P such as:

Fl(xJ;X) =02 (x); X) (28)

According to Wrobel (1986, an interesting arbitrary function is:

wi=ry/ 29

In the previous equation r is the distance between the interpolation points Xj and boundary points X. It is necessary
to rewritethe Eq. (29) in cylindricd coordinates, that is.

W= 2R RO (2207 (30)
Determination of function F is done through the solution of the foll owing differentia equation:

Ei _ow 1ov) 0%y

= 31
dR? R AR  9z° (31

Solution of Eq. (31) results:

Fi = @%E (32)



The subgtitution of the harmonic function given by Eq. (29) into the transient integral term alows the aplication of
the integration by parts technique and the divergence theorem, such as was done previoudy on the left hand side of Eq.
(5). Theresulting expression posseses only boundary integrals:

. ) j ) )
[t da = o[ S urdr - [ Wigdr - o)/ ) (33)
Q r on r
Itisinteresting to define:
== (39)

Adaptation on Eq. (33) congdering Fourier series devel opment resultsin:

0B,
on

i * _i % — _u_j i _ j _ j
c€)u(&) + 4n.|’r* B,HLdl 4n_|’r* Hy dr 4n[_|’r n'H,dr J’qu HL,dr —c(&)W' ()] (35)

Discretization of this last equation using traditional procedures of the Boundary Element Method, according
Loeffler and Mansur (1986), produces axisymmetric H and G matrices that can be arranged in a following system:

GQ-HU =(Gn-HW¥)a (36)

The next step consists to diminate the o’ vector in Eq. (36), using the basic sentence of the Dual Reciprocity
technique, exposed in Eq. (27). Then, it results in the following matrix equation:

(GQ-HU) :%(Gn—HLp)F_l u=cu (37)
The previous equation can be written simply by:

CU+HU=GQ (38)
6. Time Domain Discretization

The Eq. (38) is a time dependent matrix ordinary differential equation. The time discretization can be done easily
using well known direct integration method, such as Finite Difference method, that is:

Un _Un—l
At

U= (39)

This simple strategy has produced very good results in plane transient problems, which can be confirmed in many
references, such as Loeffler and Mansur (1986) and Partridge et al (1992). For plane problems, the time step At usually
obeys a special rule, given in many references such as Partridge et a (1992), but in axisymmetric problems the range of

suitable values appears to be more sendtive. Thiswill be demonstrated next.
The definitive matrix discretized form of Eq. (38) is given by:

(C+AtH)U, =CU,_, +AGQ, (40)

In the previous equation the prescribed and unknown values of temperature and flux are interchanged by the
original H and G matrices according to the traditiona procedure of the Boundary Element Method to form an
independent term of known values. Unknown values in future time steps are successively determined by the incremental
scheme.

7. Examples
Two axisymmetric examples that have analytical solutions are solved in this paper. The boundary conditions

prescribed are axisymmetric too in spite of the model capability to solve problems with genera boundary conditions.
The mesh employed in the numerical modelling uses constant elements. For sake of simplicity a special point in the



domain is chosen for the analysis. The numerical evaluation of the temperature over timeis ploted against the analytical
response in some graphics where the effect of time step and level of mesh refinement can be examined.

7.1. First Example:Long Solid Cylinder

The physical and geometric features of this example are shown in the Fig. 2. The problem possesses also axia
symmetry, because horizontal faces are isolated. That is, norma fluxes are prescribed and equal to zero. A sudden
increase of the external value of temperature isimposed to the vertical face of the body, initialy at zero degree. Then,
al internal domain points undergo to atransient process over time until the body reaches the steady state equilibrium.
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Figure 2. Long solid cylinder.

This problem does not present numerical difficulties to be solved. A simple mesh with 26 constant boundary
elements produced good results. Considering this behavior, a first experience consists in the evaluation of the effect of
poles in the numerical response. For this, the time behavior at the central point of the cylinder was analised using two
meshes: the first has no poles and the second has 16 poles, both meshes possessing 26 constant boundary €l ements.

1
0g
o 06|
=
[
]
o
g
= 047
0.2 Analytical sal.
P, Oint. pt., dt=015 --®--
Ry 16 Int. pt., dt=0,1s --m--
a
0 0z 0.4 0.6 0.s 1
Time ()

Figure 3. The poles effect in amesh with 26 nodes when the time step is equal 0,1s.

The results of this test were very good, even if relatively few boundary nodes are employed, as in this simulation.
Thereason for this must be related to axial symmetry. The absence of poles did not affect this solution to a high degree,
but their introduction marginally improved the quality of results. But the use of poor meshes is limited by the range of
suitable time steps. Smadler time steps are requested for poor meshes.Unfortunatelly, small values of time step strongly
excited the high modes of transient response. High modes representation usually is not good in the discrete andysis.
Then, using a few boundary elements, the choice of time step is more important. The next figure demongrated the
effect of the amadler value of time step in the transient response:
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Figure 4. The poles effect in a mesh with 26 nodes when the time step is equal 0,01s.

The initid range of response is perturbed by high modes effect, as mentioned before. After this lapse of time, the
agreement between analytical and numerical results are very good. The sole introduction of poles is not efficient to
correct this problem; only the use of richer meshes and a suitable time step alow a correct representation of the initia
period of transient process.

7.2. Second Example: Prolate Spheroidal Solid

The geometric characteristics of this example is depicted in the Fig. 5. Once more, a unit thermal shock isimposed
to the external face of the solid at initial time. The internal domain of spheroid is at zero degree. The symmetry of
spheroid to r axis has been taken into consideration.

Differently from the previous problem, this example presented higher numerical difficulties. To achieve good
resultsin theinitial time interval using a small time step, it was necessary to use 64 boundary elements with 9 poles. In
this case, an oscilatory behavior can be noticed when the time step is not suitable. Figures 6 and 7 show the response of
temperature at the center of the spheroid.

=0

Figure 5. Geometric modd for prolate spheroida solid.
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Figure 6. Mesh with 64 nodes, 9 poles and time step equal 0,055s.
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Figure 7. Mesh with 64 nodes, 9 poles and time step equal 0,060s.

An increase of the number of poles produces sensible improvement of the numerical results, such as can be noticed
in the plott in Fig. 8, where can be seen a very good agreement between numerica and analytical solutions. But thereis
alimit to the poles power. Considering the degree of refinement of the boundary element mesh, a sole increase in the

quantity of poles (higher than 15) does not produce better results.
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Figure 8. Mesh with 64 nodes, 15 poles and time step equal 0,060s.




8. Conclusions

The Boundary Element modeling to axisymmetric problems is very advantageous to engineering applications,
because both the quantity of inpu data and the computational cost of processng are so very reduced. Stationary
anaysis done by many researchers showed excelent level of acauracy. Therefore, the disposament of this advantageous
features to transient models would be very interesting. Unfortunally, the clasgcal formulation, which uses the
fundamentad transent solution to axisymmetric problems, is very difficult to implement. This fact makes this trategy
not attractive to professonas deding with numericd modeling. The Dual Redprocity formulation appeas thus, as the
most interesting way to apply the Boundary Element methodology in this classof problems.

The results oktained with the simulations acoompli shed were encouraging. The computational implementation was
simple and the cost was very low. The acauracy can be mnsidered very reasonable, snce mnstant boundary el ements
were enployed. However, an important point isthe necessty to avoid very reduced time steps. Usually a discrete model
requests very reduced time steps. In opposite, for axisymmetric appli caions the Dual Redprocity seems to request an
intermediary value of the time step situated between a minimum value to avoid the influence of high transent modes
and amaximum to valueto allow the accuracy of the numericd solution.
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