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Abstract. The modal synthesis methods are techniques used in the dynamic analysis of large structures comprising of substructures 
or components. These techniques are known to reduce model size, time and cost of required calculations without any loss of quality 
in the results. 

There are several modal synthesis methods, being each characterized through the way the modal subspace is constructed and 
boundary conditions are selected for the component modal analysis. These methods have been divided into three methodology 
fields: free interface methods, fixed interface methods and hybrid methods, which include branch mode methods. Regarding the 
structure complexity (geometry as well as the presence of damping, non-linearities, random features) the most suitable method must 
be applied considering numerical efficiency and the most faithfull representation of real interface behavior. 

Applying a general formulation to the component mode synthesis, this work studies some existing component mode methods with 
different bonding conditions between the interfaces and compares each of them in the study of flat plates. Different comparison 
methods are employed with the plates. In this work the Craig & Bampton, MacNeal and Rubin methods are studied. 
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1. Introduction  
 

The component mode synthesis methods are variant forms of the Ritz method using the technique of transforming 
the substructure from the physical space to a modal subspace comprising of the first mode shapes of the structure and 
other complementary modes. This transformation results in the reduction of the dimension of the studied problem and 
also offers the advantage of reducing calculation costs and memory space required by problems of great size.    

The structure is divided in components or substructures, which are analyzed separately for frequency and mode 
shape calculation (eigenvalues and eigenvectors). In the next step a reduced model of each substructure is achieved 
through numerical or experimental modal analysis techniques. Finally, the modal synthesis of the substructure is 
processed coupling the reduced modal equations of each substructure and calculating the frequencies and mode shapes 
of the global structure using the global reduced system of equations. 

Another advantage of the component mode synthesis methods is the possibility of avoiding repeating calculations 
in the case of structures possessing many identical modules. Even with the performance of modern computers capable 
of solving large problems substructuring is widely used because it allows the separation and treatment of the different 
parts of the structure employing different tools that are more adequate to the properties of each partition. For instance, 
component mode synthesis allows the assessment or optimization of the structures with non-linear or non-deterministic 
parameters in a more economic basis than the finite element analysis (Diniz, 1999). 

The classical component mode methods are grouped in free interface methods (Goldman, 1969; Hou, 1969 and 
Rubin, 1975) and fixed interface methods (Hurty, 1965; Craig & Bampton, 1968). A third method employs hybrid-
coupling conditions of substructures (Gladwell, 1964; MacNeal, 1971, Hale & Meirovitch, 1982 and Diniz, 2001). 

The fixed interface methods use vibration modes achieved clamping the substructure on its boundary with the 
neighboring substructures. The free interface methods use free vibration modes not clamped on its boundaries. Hybrid 
methods use a combination of free, fixed and other special vibration modes such as branch modes, loaded modes or 
residual flexibility. By choosing different boundary conditions in the interface between substructures, a different 
component mode synthesis method is characterized. Regarding the structure complexity (geometry as well as the 
presence of damping, non-linearities, random features) the most suitable method must be applied considering numerical 
efficiency and the most faithful representation of real interface behavior.  

Applying a different formulation to the component mode synthesis, this paper shows the studies conducted with the 
Craig & Bampton, MacNeal and Rubin Methods. These classical methods are compared through the results achieved in 
the dynamic study of plates.   
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2. Modal synthesis equations 
 

Every component mode method can be developed in three stages: substructuring, modal analysis of substructures 
and modal synthesis employing a reduced system of equations. In this section the general equations of each stage are 
presented.  

The equations of motion of a finite element discrete structure can be written in matrix form: 
 

[ ]{ } [ ]{ } [ ]{ } { })()()()( tftuKtuCtuM =++ ���  (1)
 

Where [M], [C] and [K] are the mass, damping and stiffness matrices, respectively. {u(t)} are {f(t)} the dynamic 
displacement and loading vectors respectively.   
 
2.1. Substructuring 
 

Applying the substructuring technique, the structural matrices may be obtained from the assembly of the 
substructure matrices.   
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Where the index “s” indicates structural matrices of the s-th substructure. [αs] is the Boolean transformation matrix 

of size (Ns x N) associated to the s-th substructure allowing the substructures assembly. Ns is the number of degrees of 
freedom of the s-th substructure and N is the total number of degrees of freedom of the structure. All elements in matrix 
[αs] are zero except if the i-th local degree of freedom of the s-th substructure is the j-th global degree of freedom of the 
structure. In this case, the element αij is unity. “m” is the total number of substructures.     
 
2.2. Modal analysis of substructures  
 

Applying the Rayleigh-Ritz method only a few low frequency mode shapes are utilized as a base for the generalized 
modal space. The mode shapes of the substructure are defined as the solution of the eigenproblem of the undamped 
substructure. Thus, for the s-th substructure the following modal equations are achieved:  
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The displacement of the s-th substructure is expressed in terms of the modal matrix [φ] formed by the first lower 

mode shapes: 
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Each matrix [Ts] is constructed with few modes and its size is given by dim[Ts] = Ns x Rs , Rs < Ns. Where Rs is the 

number of retained modes of the s-th substructure and {ηs} is the generalized coordinates vector of the system s-th 
substructure. 

Thus, the displacement vector of the assembled structure is given by: 
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where {η} is the generalized coordinated vector of the global structure (dim{η} = R = Σ Rs). The matrices [αs

*] have 
analogous form and function as matrix [α] to represent the relationship between the global generalized coordinates and 
the local generalized coordinates of the s-th substructure. [T] (dim[T] = R x N, R < N) is the transformation matrix of 
the structure from physical coordinates {u(t)} to generalized coordinates {η}. 
 
 



 
 2.3. Reduced system of equations 
 

Plugging Eq. (8) into Eq. (1) and premultiplying by [TT] yields the governing dynamic equations for the whole 
structure:  
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where the reduced global matrices of the complete structure are achieved through: 
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The transformation matrix [T] yields to the reduction of the number of equations in the problem. Reduced matrices 

[M*], [C*] and [K*] have dimensions (R x R ). 
The transformation matrix [T], in the component mode synthesis methods, contains a selection of few lower 

frequency mode shapes and other supplementary modes. The several modal synthesis methods differ in the form the 
transformation matrix [T] can be defined. The Craig & Bampton method uses a transformation matrix constructed with 
fixed-interface modes and the constraint modes (Craig & Bampton, 1968). The MacNeal method uses the free-interface 
modes and the residual flexibility modes (MacNeal, 1971). Rubin’s method uses free interface and residual flexibility 
modes as well as residual mass modes (Rubin, 1975).  

 
3. Modal synthesis methods 
 
3.1. Fixed-interface methods: the Craig & Bampton´s method 
 

From the enhancement of Hurty´s method, Craig & Bampton proposed a simple and practical method that does not 
need a special treatment of rigid body modes, which are represented as a linear combination jof static deformations. 
This method has good precision and is widely used when substructure data is attained through finite element models.  

The dynamic behavior of the structure in Craig & Bampton´s method is discribed by means of its vibration modes, 
achieved by clamping the substructure ti its neighboring substructures, and its static modes condensed on the interfaces. 
The static modes are achieved apllying unitary displacements to the interface degrees of freedom being all other degrees 
of freedom clamped.  

In the absence of inertia forces, one can define for each substructure: 
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Where: 
[ΦIF] is the interface static mode matrix defined as [ ] [ ] [ ]IFIIIF KK 1−−=Φ ; 
[ΨIR] is the matrix of the “R” first modes with fixed interface, solution of [ ] [ ]( ){ } { }0=−

ii IIIIIII MK ψλ ; 

{ηR}is the modal participation vector reduced to the “R” first modes. 
 

3.2. Free-interface methods: MacNeal´s method 
 
The method proprosed by MacNeal in 1971 introduced the residual flexibility correction, which conducts to a 

satisfatory precision and usage simplicity. This method allows the usage of modes with hybrid conditions.  
In general, free interface methods bring a transformation from physical coordinates “{u}” to modal coordinates 

“{η}” using matrix “[ΘÑÑ ]” of the substructure with free interfaces. The high frequency truncated modes contribution 
is approximated through the residual flexibility matrix of truncated modes “[ GTÑÑ ]” (MacNeal, 1971). For a discrete 
substructure with “Ñ” degrees of freedom the displacement equation is expressed as:  
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[ΘÑÑ] is the free interface mode matrix, [ΘÑR] is the retained mode matrix and [ΘÑT] is the truncated mode matrix.  

MacNeal approximates the effect of truncated modes using the flexibility matrix of the structure and the interface 
forces: [ΘÑT] {ηT}= [GTÑÑ]{fÑ.}. Thus, in MacNeal’s method Eq. (15) becomes:  
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where: 
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Where [GTÑÑ] is the truncated flexibility matrix and [GRET] is the retained flexibility matrix. [ΘÑR] and [KÑR] are the 

mode shape and stiffness generalized matrices for the retained modes respectively. The truncated and retained 
flexibility matrices of the substructure are calculated using the classical definition of flexibility matrix (Craig Jr., 1981). 

Partitioning the substructure degrees of freedom in interface (index F) and internal (index I) degrees of freedom, 
Eq. (16) becomes:  
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Writing the interface forces “fF” as function of displacements “uF” and generalized displacements “η” the physical 

displacements can be  written as function of interface degrees of freedom and free interface modes of each substructure: 
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Where matrices BIF and CIR  represent the residual flexibility correction terms: 
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3.3. Free interface methods: Rubin´s method 

 
Rubin has extended MacNeal’s method to include inertial and damping (when applicable) effects of the higher 

frequency modes using a second order MacLaurin series expansion. MacNeal approximates the high frequency 
truncated modes contribution by means of the residual flexibility. This approximation is performed with Eq. (15) by 
Rubin who also includes the residual mass and damping second order effects leading to Eq. (23) (cf. eq. (16)): 
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where: 
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Inertial and damping correction matrices [HÑÑ] and [BÑÑ] are only a transformation of mass and stiffness matrices 

respectively by pre and post-multiplying by [GÑÑ]. The corresponding residual matrices [GTÑÑ,], [HTÑÑ] and [BTÑÑ] are 
obtained from the complete matrices [GÑÑ ], [HÑÑ] and [BÑÑ ] through the elimination of retained modes. 

Thus the correction terms produced by the second order approximation involve only the physical damping and mass 
matrices pre and post-multiplied by the flexibility matrix [GÑÑ]. 

 
Making use of the modal orthogonality as matrizes truncadas H e B can also be obtained by:  
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Ignoring damping terms of Eq.(23) leads to: 
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Where the residual flexibility correction matrix can be expressed by an [R] matrix: 
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As in MacNeal’s method the displacement equation can be written in terms of internal and interface degrees of 

freedom:  
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Expressing interface forces in terms of interface displacements one can write physical displacements as a function 

of interface degrees of freedom the free interface modes of the substructure with residual flexibility correction and 
Rubin´s second order inertial correction:  
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Where [B] and [C] are given by:  
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4. Comparison of component mode methods 
 

Aiming the comparison of different component mode methods of a linear conservative system, the results attained 
using the methods discussed before are presented in the modeling of a simple structure. 

As an example it was used a non-symmetric plate clamped on one of its end, Fig.(1a). The same structure was 
divided in two substructures as depicted in Fig.(1b). 

The reference results were obtained using the Finite Element Analysis for the plate shown in Fig.(1a) modeled as 
one complete structure.  

For the finite element analysis shell elements were used with 3 degrees of freedom by node. The modeled plate has 
193 nodes and 11 of them are restrained. There are 8 interface nodes between the 2 substructures. The complete finite 
element model has a total of 546 degrees of freedom, 24 interface degrees of freedom and 522 internal degrees of 
freedom. 



 

 
Figure 1. Finite element modeling and division into substructures. 

 
As a next step, the comparison of frequencies and mode shapes was performed. For mode shape comparison the 

Modal Assurance Criterion (MAC), which is an indicator parameter of correlation between the i-th mode of the first test 
and the j-th mode of the second test (Friswell, 1985), was employed. In the discussed problem, the comparison was 
performed between the reference results, attained with the finite element analysis, and the component mode synthesis 
results.  
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The MAC coefficient varies between 0 and 1. A value next to 1 indicates a good correlation between the two 

compared mode shapes, while a value next to zero indicates poor correlation. 
In the comparison of experimental results and analytic answers a MAC above 0,75 indicates that two mode shapes 

are correlated. For numerical simulations the MAC coefficient should be above 0,9. 
 
4.1. Results of substructuring methods 

 
For comparison of frequencies and mode shapes, the fixed interface method used 24 interface static modes (one for 

each interface degree of freedom) and 20,10 and 5 fixed interface modes for each substructure. Figure (2) shows the 
comparison between mode shapes of both simulations (substructuring and finite element analysis) using the MAC 
coefficient for the Craig & Bampton and MacNeal methods with 5 and 10 modes.  Figure (3) makes the same 
comparison, but with Craig & Bampton and Rubin methods. 

The comparison of mode shapes for 20 modes is performed in Fig. (4). Rubin´s method presented the same results 
and the MAC comparison was omitted.  
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Figure 2. MAC coefficient comparison between Craig & Bampton and MacNeal with 05 and 10 modes for each 
substructure. 
 
 

For the three cases, the increase of modes used for substructuring increases the quality of results. In the case of 5 
modes for each substructure, one can observe that only the 10 first modes are achieved with quality, regarding the size 
of the modal space employed.  

Observing Fig.(1), the MAC matrices achieved with MacNeal’s and Rubin’s methods are identical. This also occurs 
for the mode frequency values shown in Tab.(1). Thus, one can verify that the order 2 correction applied in Rubin’s 
method increases the difficulties of calculation, but in the studied case it does not enhance the quality of results. This 
same pattern is repeated when 20 modes are used in each substructure and for that reason, only MAC matrices for Craig 
& Bampton’s and MacNeal’s methods was shown.    
In the case with 20 modes, the presented results achieved high quality regarding that the representing modal space of 
the reduced problem has a highly superior dimension than the 20 modes shown in Fig.(3)    

In the majority of industrial applications only few lower frequency modes are important. The achieved results 
show, for instance, that for achieving the first 5 structure vibration modes the component mode synthesis technique with 
only 5 modes for each substructure leads to results really near those attained with finite element analysis and with a 
reduced computational cost (memory and time).  

In general, the studied free interface methods, lead to better results than the fixed interface method. Due to a better 
representation of the interface dynamic behavior, the free interface modes with residual flexibility and second order 
inertial corrections approximated eigenvalues of high frequencies with a smaller error than fixed interface modes with 
static interface modes.  
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Figure 3. MAC coefficient comparison between Craig & Bampton and Rubin with 05 and 10 modes for each 
substructure. 
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Figure 4. MAC coefficient comparison for Rubin and MacNeal’s methods with 20 modes for each substructure. 

 
 
 



 
  
Table 1. Frequencies attained with component mode methods and finite element analysis.   

 
Craig & Bampton - values in [Hz]    

24 static modes 
MacNeal - values in [Hz]           
24 flexibility components  

Rubin - values in [Hz]             
24 flexibility components  

number of modes number of modes number of modes 

Reference  
F.E.A.     
Freq.      
[Hz]  5 modes 10 modes 20 modes 5 modes 10 modes 20 modes 5 modes 10 modes 20 modes

2,6763 2,6763 2,6763 2,6763 2,6763 2,6763 2,6763 2,6763 2,6763 2,6763 
13,15 13,1517 13,1506 13,1504 13,1504 13,1504 13,1503 13,1504 13,1504 13,1503 
14,56 14,5633 14,5604 14,5599 14,56 14,5599 14,5598 14,56 14,5599 14,5598 
32,642 32,6526 32,6441 32,6425 32,6433 32,6427 32,6425 32,6433 32,6427 32,6425 
41,468 41,4981 41,471 41,4681 41,4683 41,4681 41,468 41,4683 41,4681 41,468 
65,808 66,1499 73,4828 65,8156 65,8147 65,8114 65,8093 65,8147 65,8114 65,8093 
73,237 73,4516 73,2663 73,2419 73,2486 73,2417 73,2391 73,2486 73,2417 73,2391 
81,261 81,8107 81,3521 81,2755 81,297 81,277 81,267 81,297 81,277 81,267 
103,29 103,9116 103,374 103,3041 103,332 103,3142 103,3001 103,332 103,3142 103,3001 
117,85 118,4899 117,9308 117,8654 117,8681 117,8589 117,8547 117,8681 117,8589 117,8547 
134,73 144,7446 135,1136 134,7583 134,7654 134,75 134,7363 134,7654 134,75 134,7363 
140,69 149,8788 141,3486 140,7576 140,7445 140,724 140,6988 140,7445 140,724 140,6988 
159,85 184,4957 160,6491 160,0415 159,9088 159,8751 159,8572 159,9088 159,8751 159,8572 
168,74 298,1045 169,1028 168,7739 168,8258 168,7708 168,7533 168,8258 168,7708 168,7533 
193,54 320,5442 193,9325 193,6106 193,8974 193,6818 193,5913 193,8974 193,6818 193,5913 
195,83 369,3196 196,6802 195,9484 196,2956 196,0294 195,8791 196,2956 196,0294 195,8791 
214,76 448,5822 216,6528 214,9512 215,343 214,9635 214,8261 215,343 214,9635 214,8261 
241,61 615,589 244,207 242,261 242,0703 241,7743 241,6773 242,0703 241,7743 241,6773 
257,56 957,5654 269,4902 258,0741 258,3147 258,0555 257,6664 258,3147 258,0555 257,6664 
281,43 1002,142 296,0545 281,6961 281,8283 281,6867 281,506 281,8283 281,6867 281,506 

 
 
 
5. Conclusions  
 

In this work, three component mode synthesis methods were implemented. In the formulation of the methods and in 
their implementation, a generalizing notation was proposed, following the work of Aziz et all (1993), intending the 
comprehension of a similar procedure for all studied methods. In this procedure, the main feature is the presence of a 
coordinate transformation matrix from a modal space to a physical space. 

The studied methods were Craig & Bampton’s method, which uses fixed interface modes with static interface 
modes, MacNeal’s method, using free interface modes with flexibility correction modes and Rubin’s method, which 
applies free interface modes with flexibility correction terms and second order inertial correction terms. The three 
methodologies were applied to the study of vibration frequencies and mode shapes of two attached flat plates, each one 
of them representing one substructure.  

The comparison of results was performed using the MAC criterion, which compares different mode shapes 
achieved with the substructuring methodologies and the respective mode shapes achieved with a finite element analysis. 
Frequencies were compared as well.  

The results showed that free interface methods achieved better accuracy than fixed-interface methods due to better 
representation of interface behavior between the two substructures. Rubin’s method, which applied second order inertial 
correction terms, presented the same results than MacNeal’s method. Thus, for the flat plate case, the inclusion of 
second order corrections was not necessary. A study of different linking patterns between substructures is necessary to 
confirm the need of second order corrections. 

This study also emphasized that the use of component mode synthesis methods with a reduced modal space requires 
lower computer costs compared to finite element analysis if the user is interested only in lower frequency results. The 
first five frequencies achieved with all methodologies were achieved with a small error showing the advantage in the 
use of fewer modes for building a modal space to represent the dynamic behavior of the structure.   
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