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Abstract. Due to centrifugal instability, the boundary layer over a concave plate produces counter rotating vortices
known as Gortler vortices. The resulting wavelength of these vortices are determined, in experimental facilities, by the
upstream history of the flow. In isotropic disturbance conditions, the predominant wavelength corresponds to the fastest
growing vortices predicted by the linear stability theory. Previous investigations considered the wavelength selection
mechanism due to free-stream conditions and wall roughness. The present investigation considers the excitation of
Gortler vortices through a suction and blowing strip. The study is based on numerical simulations of the vorticity
transport equations derived from the Navier-Stokes equations, written in a curvilinear coordinate system. The resulting
vorticity-velocity equations are solved using a compact high-order finite difference technique. The results show that, when
the vortices are excited by suction and blowing variation in the spanwise direction according to a cosine function, the first
harmonic may have a stronger growth rate then predicted by the weakly nonlinear theory if its wavenumber corresponds to
a higher linear stability growth rate. Curves of energy variation for different harmonics and isolines of streamwise velocity
in the plane perpendicular to the streamwise direction are presented, showing the dominant mode and the development of
the characteristic mushroom structures.

Key words: Boundary layer stability, Compact finite difference scheme, Vorticity-velocity formulation, Hydrodynamic
instability, Laminar flow transition.

1. Introduction

In general, turbulent flows are the most common in practical applications. Nevertheless, there are a large
number of situations in which transition to turbulence is of significant importance. For example, in the flow over
low Reynolds number turbine blades and laminar flow airfoils. The understanding of how transition takes place
can help in predicting and even controlling transition to turbulence. Over recent years the body of knowledge
on laminar flow stability and transition has increased dramatically due to the development of new experimental
and numerical techniques as well as due to advances in applied mathematical theories. Nevertheless, there are
many transition scenarios for which a physical explanation is still unknown, and predicting transition location
is still a challenge in many engineering applications.

The study of boundary-layer stability over concave surfaces, started by Gortler (1940), has attracted the
attention of several scientists. The centrifugal instability mechanism is responsible for the development of
counter-rotating vortices, aligned in the streamwise direction, known as Gortler Vortices (GV). Initially these
vortices have a very weak growth rate and the resulting wavenumber is strongly dependent on the previous
history of the flow. It is therefore easy to create a flow structure with a wavelength different from the fastest
growing one.

Bippes (1978) studied experimentally the flow over concave surfaces and presented results for three different
upstream conditions: without any disturbance generator, with screens to produce isotropic disturbances and
with heated wires in order to have controlled disturbances. In all the experiments he found the characteris-
tic counter-rotating vortices. When using screens, Bippes suggests that the selected wavelength follows the
maximum amplification curve predicted by linear stability theory (LST).
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A well documented article presenting experimental results was written by Swearingen and Blackwelder
(1987). Their results are frequently used for validation by numerical experimentalists. They said that the re-
peatability of the experiments was very good although they did not use any mechanism to generate disturbances.
The resulting spanwise pattern was found to depend on the last screen chamber used to control the turbulence
level. Myose and Blackwelder (1991) show results where the GV wavelength was changed by varying the amount
of tunnel side wall boundary layer removal just upstream of the concave wall test section leading edge. They
concluded that when the disturbance field is isotropic the wavenumber along the largest amplification curve is
the preferred one.

Hall (1982) presented a parabolic model for the development of GV, questioning the formulation based on
normal modes of a parallel base flow. He states that the vortices depend on the previous history of the flow
and that the resulting growth rate is dependent on the initial disturbance and on its initial location. Lee and
Liu (1992) reproduced numerically the experimental study of Swearingen and Blackwelder with a parabolic
model. They used eigenfunctions obtained from local normal mode analysis as initial conditions. They found
the same growth rate while initiating the simulations in three different streamwise positions. They concluded
that different initial disturbances tend to GV predicted by a normal mode analysis further downstream. They
attributed the results obtained by Hall to the use of not necessarily hydrodynamic possible initial conditions.
With their formulations, Lee and Liu were successful in obtaining the mushroom shape structures, that are
characteristic of GV.

Guo and Finlay (1994) studied the wavenumber selection, splitting and merging of Dean and Gortler Vortices.
They showed that when the energy level of GV is low, the spatial growth of the vortices is governed by primary
instability. At this stage, vortices with different wavelength can develop at the same time and show no significant
interaction with each other. They also found that for large wavenumbers a new pair of vortices with different
wavelength is likely to appear, causing a splitting of the original vortices.

Recognizing that in experimental apparatus the GV are seeded by either upstream screens and wall rough-
ness, Bottaro and Zebib (1997) studied different wall roughness distributions and their influence in GV forma-
tion. They found the preferable wavelength to be near the most amplified one for different disturbance inducers.
They also found that triangular riblets are the best GV promoters, but in this case the wavelength is set by
the distance between the riblets and not by the mode with the largest amplification rate. They also found that
before the instability mechanism can start to amplify disturbances, there is a linear filtering region, which they
called receptivity region.

As can be concluded from all these investigations, several techniques can be used to ‘seed’ Gortler vortices
in the flow field in experimental facilities and numerical simulations. Previous investigations considered the
wavelength selection mechanism due to free-stream conditions and wall roughness, in this study the perturbation
is introduced by suction and blowing at the wall in a region called disturbance strip. The normal velocity
component at the wall varies with a cosine function in the spanwise direction. It is shown that there exists a
region between the disturbance strip and the region where these disturbances propagates as classic GV. In this
region, which we called receptivity region, perturbations are filtered by the boundary layer. Tests were made
in order to verify the behavior of the flow in the receptivity region and in the following GV dominated region.
The study is performed using spatial Direct Numerical Simulation (DNS).

The paper is structured in the following way: first the formulation and the numerical method are presented,
including a discussion about the types of boundary conditions and damping zones used near boundaries to
avoid wave reflections; then verification and validation test cases are presented comparing the DNS results
with results from other numerical models (Mendonga, 2000; Lee and Liu, 1992; Li and Malik, 1995) and with
experimental results from Swearingen and Blackwelder (1987); next the disturbance behavior in the receptivity
region downstream of the suction-blowing zone is analyzed for different spanwise wavenumbers and the last part
presents the conclusions and final comments.

2. Formulation

In this study, the governing equations are the incompressible, unsteady Navier-Stokes equations with constant
density and viscosity. They consist of the momentum equations for the velocity components (u,v,w) in the
streamwise direction (z), wall normal direction (y) and spanwise direction (z):
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and the continuity equation:
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The variables used in the above equations are non-dimensional. They are related to the dimensional variables
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where Re is the Reynolds number, the terms with an over-bar are dimensional terms, L is the reference length,
Us is the free-stream velocity, 7 is the kinematic viscosity and R is the radius of curvature.

The Gértler number is given by Go = (k.v/Re)'/2. In these equations, the term (Go*u?)/(V/Reh) is the
leading order curvature term, where h = 1 — k.y and k. is the curvature of the wall.

The vorticity here is defined as the negative curl of velocity vector. Knowing that and taking the negative
curl of the momentum equations (1) to (3) and using the fact that both the velocity and the vorticity vectors
are solenoidal, one can obtain the vorticity transport equation in each direction:
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where a = vw; — uwy, b = uw, — ww, and ¢ = wwy — vw, are the nonlinear terms resulting from convection,
vortex stretching and vortex bending.

Taking the definition of the vorticity and the mass conservation equation, one can obtain a Poisson equation
for each velocity component:
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The flow is assumed to be periodic and symmetric with respect to z = 0 in the spanwise (z) direction.
Therefore, the flow field is expanded in real Fourier cosine and sine series with K spanwise Fourier modes:

K K

(u,v,w;,b,¢) = Z(Uk,Vk,sz,Bk,Ck) cos(Brz) (W, wg, wy,a) = Z(Wk,ka,ka,Ak) sin(Brz) (12)
k=0 k=1

where ), is the spanwise wavenumber given by 8y, = 27k/A,, and A, is the spanwise wavelength of the funda-
mental spanwise Fourier mode.

Substituting the cosine and sine transforms (Eq. 12) in the vorticity transport equations (6 to 8) and in the
velocity Poisson equations (9 to 11) yields the governing equations in the Fourier space:
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Figure 1: Integration domain.
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The governing equations are complemented by the specification of boundary conditions. At the wall no-slip
and no penetration conditions are imposed, except at the suction and blowing region where the wall-normal
velocity component is specified. At the inflow the velocity and vorticity components are specified based on the
Blasius boundary layer solution. At the upper boundary the vorticity disturbances decay exponentially to zero.
Finally, at the outflow boundary the second derivative of all dependent variables are set to zero.

3. Numerical Method

The Eqgs.(13) to (18) are solved numerically inside the integration domain shown schematically in Fig. 1.
The calculation are done on a orthogonal uniform grid, parallel to the wall. The fluid enters the computational
domain at = xg and exits at the outflow boundary = ,,,,. Disturbances are introduced into the flow field
using a suction and blowing function at the wall in a disturbance strip. This region is located between z; and
z2. In the region located between z3 and x4 a buffer domain technique was implemented in order to avoid wave
reflections at the outflow boundary. In these simulations a Blasius boundary layer is used as the base flow.

At the inflow boundary (x = xy), all velocity and vorticity components are specified. At the outflow boundary
(£ = Tmaz), the second derivative of the velocity and vorticity components in the streamwise direction are set
to zero. At the upper boundary (¥ = ymae) the flow is assumed to be irrotational. This is satisfied by setting
all vorticity and their derivatives to zero. An exponential decay of the velocity is imposed using the condition:
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At the wall (y = 0), no-slip conditions are imposed for the streamwise (U) and the spanwise (W}) velocity
components. For the wall-normal velocity component (V}) the non-permeability and no-penetration conditions
are imposed in all points at the wall except between x; and x5, where the disturbances are introduced. In
addition, the condition 9V}, /0y = 0 is imposed to ensure conservation of mass. The equations used for evaluating
the vorticity components at the wall are:
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The introduction of the disturbances at the wall is done via a slot in the region (iy < i < is), where 4; and
i are, respectively, the first and the last point of the disturbance strip, in the z direction. The function used
for the variation of the normal velocity V}, along the streamwise direction is:

Vi(i,0,t) = Asin®(e) for 4y <i<iy and Vi(x,0,t)=0 for i<i; and i> iy, (21)

where € = 7(i — i1)/(ia — 1) and A is a real constant that can be chosen to adjust the amplitude of the
disturbance. The chosen function (sin3) ensures that, at ¢ = 4; and ¢ = 42, the normal velocity component, its
first derivatives and second do not have a discontinuity going in and out of the disturbance strip region. The
variable ¢ indicates the grid point location z; in the streamwise direction, and points i; and i, correspond to x;
and z» respectively.

A damping zone near the outflow boundary is defined in which all the disturbances are gradually damped
down to zero. This technique is well documented in Kloker et al. (1993), where the advantages and requirements
are discussed. In the work of Meitz and Fasel (2000), they adopted a fifth order polynomium, and the same
function was used in the present simulations. The basic idea is to multiply the vorticity components by a ramp
function fao(z) after each step of the integration method. This technique has proved to be very efficient in
avoiding reflections that could come from the outflow boundary conditions when simulating disturbed flows.
Using this technique, the vorticity components are taken as:

Qk($7y) = f2(.fL')Qk(.Z’,y,t), (22)

where Qg (z,y,1) is the disturbance vorticity component that comes out from the Runge-Kutta integration and
f2(x) is a ramp function that goes smoothly from 1 to 0.
The implemented function was:

fo(z) = f€) =1 —6€® + 15e* — 1063, (23)

where € = (i —i3)/(i4 — i3) for i3 < i < i4. The points i3 and i4 correspond to the positions z3 and z4 in the
streamwise direction respectively. To ensure good numerical results a minimum distance between x3 and x4
and between x4, and the end of the domain - x,,,, should be specified. The zones in the simulations presented
here has 30 grid points in each region.

Another buffer domain, located near the inflow boundary is also implemented in the code. As pointed out
by Meitz (1996), in simulations involving streamwise vortices, reflections due to the vortices at the inflow can
cause difficulties. The function adopted here is similar to the one used for the outflow boundary:

fa(z) = f(€) = 66> — 15 + 1062, (24)

where € is € = (i — 1)/(i1 — 1) for the range 1 < ¢ < i;. All the vorticity components are multiplied by this
function in this region.

Simulations with two different types of buffer domain were carried out. In the first type, the function given
in Eq.(24) was applied to all Fourier modes between g and z;. In the second type, the damping function was
used only for the fundamental Fourier mode in the region between z¢ and x;. For the other Fourier modes,
all the vorticity components are set to zero between xg and 5. The damping function is used between z2 and
2 X x5 for all modes but the fundamental. The reasons and advantages of these two techniques are discussed in
Sec. 4.

The time derivatives in the vorticity transport equations were discretized with a classical 4'® order Runge-
Kutta integration scheme (Ferziger and Peric, 1997). The steps 4 to 9 were carried out for each step of
the Runge-Kutta method. The spatial derivatives were calculated using a 6t* order compact finite difference
scheme (Souza et al., 2002a; Souza et al., 2002b). The differences between the scheme used in this work and
the approximations shown by Lele (1992) are in the discretization of the boundary and near boundary points.
At the boundaries, a 3"% order approximation is proposed by Lele, whereas for points near the boundaries he
proposed a 4** order approximation. In the current work a 5t order approximation for the boundary points
was adopted, while for points near the boundaries, a 6! order approximation was used. More details of this
compact scheme can be found in Souza et al. (2002a). The V-Poisson equation (17) was solved using a Full
Approximation Scheme (FAS) multigrid (Trottenberg and Hackbusch, 1986). A v-cycle working with 4 grids
was implemented.

4. Numerical Results
4.1. Validation

In order to test the accuracy and reliability of the mathematical model and of the numerical implementation
some tests were performed. The results obtained with the current code were compared with results obtained



with different models (Mendonga, 2000; Li and Malik, 1995; Lee and Liu, 1992) and experimental results
(Swearingen and Blackwelder, 1987).

The parameters used in the test case were those from the experiment of Swearingen and Blackwelder (1987)
who considered a boundary layer on a concave plate with B = 3.20 m. The free-stream velocity is U, = 5 m/s.
The simulation starts at g = 10 cm from the leading edge, which corresponds to a boundary-layer thickness
parameter § = \/Zo/Us = 5.477 cm, a Gortler number Go = 2.38859, and a Reynolds number Re = 33124.
The average spanwise wavelength was A, = 1.8 c¢m in the experiment, which corresponds to a non-dimensional
wavenumber of 8 = 34.90. This corresponds to a wavelength parameter for the fundamental Fourier mode, given
by Ay = (U /7)( X2/ R)/?, of A; = 450. The reference length used was L = 10 cm. The number of points
used was 321 and 281 in the streamwise and the wall-normal directions respectively. The grid spacing was 0.04
and 8.25 x 10~ in the streamwise and the wall-normal directions respectively. The disturbance-strip location
was 1.6 < z < 2.6. The number of Fourier modes simulated was 7. The buffer-domain technique adopted near
the inflow was of the second type. Test runs with a smaller grid spacing and larger number of Fourier modes
indicated that the solutions were grid independent.

Figure 2 - left presents the streamwise development of the energy in each k Fourier mode. The energy is
defined as:

oo 1 o
Ey = /0 (|u;c|2 + v > + |w;c|2) dy if k>0 and Ep= 5/0 (Jup|® + |wi|?) dy for k=0. (25)

The energy of the mean flow distortion did not take into account the velocity component normal to the wall
v to allow comparisons with the PSE model, where v§ does not go to zero as y — oo. The (') symbol indicates
that only the disturbances are taken into account.

Another verification test case compares DNS results, PSE results (Mendonga, 2000) and numerical results
from Li and Malik (1995). All the flow conditions were identical to those in the experimental arrangement of
Swearingen and Blackwelder, but the wavenumber was reduced by a factor of 2. The resulting vortices were
closer spaced than the most amplified vortex modes given by the LST. Fig. 2 - right shows the streamwise
development of the energy for each Fourier. The comparisons show very good agreement between the DNS
results and other numerical models. The results obtained with the present model before = 40 c¢m, correspond
to a receptivity region. The available PSE model (Mendonga, 2000) can not go into the region where the
nonlinear products are high.
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Figure 2: Variation of the energy of each Fourier mode. Fourier modes 0 to 6. Left - Comparison between DNS
(solid lines) and PSE results (squares) - Mendonca (2000). Right - Comparison between DNS results (solid
lines), PSE results (diamonds) - Mendonca (2000), and results from Li and Malik (1995) (circles).

Figures 3 and 4 show the variation of the streamwise velocity component in the (y, z) plane. The numerical
study from Lee and Liu (1992) and the experimental measurements from Swearingen and Blackwelder (1987) are
presented for the same streamwise positions along the longitudinal direction. For the two different streamwise
positions shown, the development of the mushroom type structures is similar. The numerical results from Lee
and Liu (1992) are based on a 2"?-order model, being slightly more dissipative. This behavior can be seen
in both figures (Fig. 3 and 4), where the contour lines of streamwise velocity in the head of the mushroom
structure goes from u/Us, = 0.9 to u/Us, = 0.3 with the present investigation, being closer to the experimental
results.

4.2. Wavelength parameter cases

In this section we present results of simulations performed using three different wavelengths, corresponding
to a wavelength parameters for the fundamental Fourier mode Ay of 159.1,450 and 692.6. The two types of
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Figure 3: Contour lines of streamwise velocity u/Us from 0.1 to 0.9 in increments of 0.1. DNS results-left,
other model numerical results -center and experimental results - right. Streamwise position z = 90 cm.
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Figure 4: Same as Fig. 3 for streamwise position 2z = 100 cm.

buffer domain near the inflow defined in Sec. 3 are used. Thereafter they are called type 1 and type 2 buffer
domain.

The type 2 buffer domain was used because in the introduction of disturbances at the wall using a cosine
function with wave number 3, in the receptivity region other modes than the fundamental are strongly excited
if the corresponding wavenumbers are unstable according to LST. This behavior is not desirable when studying
GV of a specific wavelength. The type 2 buffer domain tappers the disturbances of the higher harmonic in the
receptivity region, and allow their growth after the fundamental mode starts to propagate as weakly nonlinear
GV.

When studying the Boundary-layer receptivity phenomenon due to suction and blowing at the wall it is
necessary to use the type 1 buffer domain and let the dominant harmonic grow naturally. The same test case
was then run with type 2 buffer domain in order to make comparisons with the weakly nonlinear GV.

In Fig. 5 - left the streamwise development of energy for Ay = 692.6 with type 2 buffer domain is shown.
The receptivity region runs approximately from the streamwise position z = 18 to z = 40 cm. The resulting
growth of the disturbance higher harmonics is promoted by the fundamental mode. The use of the type 2 buffer
domain reduces the amplitude of the harmonic modes in the receptivity region.

Using the same parameters and a inflow buffer domain of type 1, the resulting streamwise development of
the disturbance energy is shown in Fig. 5 - right. When the disturbances are introduced at the wall, both
the fundamental and the first harmonic are excited. The first harmonic mode has Ay = 244.88, and therefore,
according to LST, a growth rate larger than the fundamental mode. The region of receptivity for the first
harmonic is smaller than the corresponding region for the fundamental mode. After the streamwise position
of £ = 50 cm the fundamental and the first harmonic grow with almost the same amplitude until saturation
is reached. In Fig. 6 the mushroom pattern of the two simulations are presented at x = 100 cm. It can be
observed that with type 2 buffer domain, there is only one mushroom structure, and with the type 1 buffer
domain, there are 3 mushroom structures in formation. This structure is in agreement with the growth of the
energy of the first and higher harmonics, resulting in a shorter wavelength.

A simulation was carried out with the parameter used by Swearingen and Blackwelder (1987) in their
experiment. The results are plotted in Figs. 7 - left and 7 - right. The fundamental mode corresponds to
a Ay = 450, so its first harmonic has A = 159.1. Here the same behavior observed for Ay = 692.6 can be
seen for the fundamental and its first harmonic by comparing the results with the two different types of buffer
domain near the inflow. The difference is that, when the fundamental mode saturates, its first harmonic tends
to decrease. So, the first harmonic does not have enough energy to change the spanwise pattern. This can
be observed by comparing the mushroom structures at the streamwise position of x = 110 ¢cm in Fig. 8. A
difference between the two results can still be observed, but only one mushroom structure appears. With type
2 buffer domain the downwash region has a weaker velocity gradient at the wall and the stem of the mushroom
is narrower. This may have implications in secondary instability.

Figure 9 shows the streamwise development of the disturbance energy in the streamwise direction for type
2 and type 1 buffer domains for simulations with Ay = 159.1. In these cases the first harmonic (A = 56.25) has
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Figure 5: Energy for Ay = 692.6, Fourier modes 0 to 4, Left - type 2 buffer domain, Right - type 1 buffer
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Figure 6: Contour lines of streamwise velocity u/Us, from 0.1 to 0.9 in increments of 0.1. Left - type 2 buffer
domain. Right - type 1 buffer domain. Ay = 692.6. Streamwise position z = 100 cm.

a very small growth rate. For type 1 buffer domain (Fig. 9 - right), the first harmonic has an initial ‘linear’
growth, but downstream of the streamwise position z = 60 cm the energy behavior of the harmonic modes are
almost the same as that of the case with type 2 buffer domain. The mushroom structures for both cases at the
streamwise position z = 100 ¢cm are shown in Fig. 10. No differences can be observed between these figures.

A last simulation was done with Ay = 450 in which three Fourier modes (1,2 and 3), with identical amplitudes
were excited. The spanwise variation of the normal velocity component at the wall is given by cos(Brz) +
cos(208kz) + cos(3Bkz). The resulting streamwise development of the disturbance energy is plotted in Fig. 11 -
left. It can be observed that both the fundamental mode (mode 1) Ay = 450 and the first harmonic (mode 2)
A = 159.1, have a strong growth, and when mode 2 saturates mode 1 continues to grow. It can also be observed
that the Fourier mode 2 grows stronger than mode 1 in the region between streamwise positions £ = 40 cm
and x = 70 cm. In Fig. 11 - center and right the mushroom structure is plotted at two streamwise positions,
£ =70 cm and = 110 cm. At the streamwise position z = 70 cm, where mode 2 dominates, two mushroom
structures are observed per A,. They are modulated so that the one at z = 0.9 is largest. At the streamwise
position of x = 110 cm, the modulated pattern is strongly pronounced. The structure is very different from the
typical GV excited single mode. In this case also, the secondary instability will have a different behavior.
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Figure 7: Energy for Ay = 450, Fourier modes 0 to 7, left - type 2 buffer domain, right - type 1 buffer domain.
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Figure 8: Contour lines of streamwise velocity u/Us from 0.1 to 0.9 in increments of 0.1. Left - type 2 buffer
domain. Right - type 1 buffer domain. Ay = 450. Streamwise position z = 110 cm.
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Figure 10: Contour lines of streamwise velocity u/Us, from 0.1 to 0.9 in increments of 0.1. Left - type 2 buffer
domain. Right - type 1 buffer domain. Streamwise position z = 100 cm.
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Figure 11: Left - Energy for Ay = 450, type 1 buffer domain, Fourier modes 0 to 4. Middle and left - Contour

lines of streamwise velocity u/Us from 0.1 to 0.9 in increments of 0.1. Streamwise position z = 70 cm - center
x =110 cm - right.



5. Conclusions

The paper presents a numerical model based on a high-order compact finite difference scheme to solve
the complete Navier-Stokes equations in a direct numerical simulation over concave surfaces. The model was
validated by comparing results with three different numerical models (Mendonga, 2000; Li and Malik, 1995; Lee
and Liu, 1992). The validation was done by comparing the results with experimental results from Swearingen
and Blackwelder (1987).

Gortler vortices generated by disturbances introduced at the wall by suction and blowing in a disturbance
strip may have a structure different from the structure observed according to weakly nonlinear theory. This
behavior is observed because the suction and blowing region excites different Fourier modes which may be
unstable according to LST and a weakly nonlinear theory, having a growth rate higher than the growth rate
of the first mode. In previous studies, where Gortler Vortices were seeded by wall roughness and free stream
disturbances, this behavior was not observed. The simultaneous growth of the different modes modifies the
resulting mushroom pattern. This may have significant consequences for secondary instability, which is strongly
dependent on the velocity profiles formed by the vortices.

In order to use the DNS model to study the weakly nonlinear development of Gortler vortices of a specified
wavenumber, a damping zone downstream of the suction and blowing strip it was necessary in some cases to
eliminate the undesired eigen-modes.
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