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Abstract. The boundary layer over a rotating disk has been utilized as a prototype of 3-D boundary layers for the
study of cross-flow instabilities. This type of flow is encountered, for instance, in the boundary layer over swept wings.
It has been shown (Pontes et. al. 2002) that the neutral stability curves for the boundary layer over a rotating disk in
the presence of a viscosity gradient normal to the disk wall, are displaced in the sense of increased instability when the
viscosity close to the wall is larger than the bulk viscosity. In order to complete the stability analysis using moderate
computational resources, it is necessary to compute the neutral-stability curves defining the region of instability in an
efficient way.

The numerical method used to determine the neutral-curve is a numerical continuation method know as predictor-
corrector method. This numerical method is an interesting way to solve the problem of finding the hydrodynamic stability
curves of a boundary layer over a rotating disk because it demands computational costs much smaller than other kinds of
numerical methods. In this work, the first order predictor-corrector method employed for the computation of the neutral
curves is discussed. The technique is then extended to include high order predictor methods.
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1. Introduction

The boundary layer over a rotating disk has been utilized as a prototype of 3-D boundary layers for the study
of cross-flow instabilities. This type of flow is encountered, for instance, in the boundary layer over swept wings. The
existence of a hydrodynamic instability in rotating disk flow has been the object of a number of investigations, both
experimental (Faller, 1991), (Lingwood, 1995), (Wilkinson and Malik, 1985), and theoretical (Lingwood, 1995), (Malik,
1981), (Malik, 1986), in the case of fluids with uniform viscosity. The main result shows that the steady flow becomes
unstable beyond a certain non-dimensional distance from the axis of rotation. This distance is the Reynolds number of
the problem, defined by:

f=r (y(&)y/z @

where r is the radial distance from the axis, 2 and v(co) are the angular velocity and the bulk viscosity far from the
disk surface. In this work we are concerned with a linear stability analysis to investigate the influence of a viscosity
gradient along the axial direction, on the stability of the boundary layer developed close to the rotating disk. In order
to overcome the difficulties of evaluating the steady hydrodynamic and concentration fields and performing a stability
analysis of the coupled fields we shall adopt the strategy of assuming a steady viscosity profile, dependent on the axial
direction.
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It has been shown (Pontes et. al. 2002) that the neutral stability curves for the boundary layer over a rotating disk
in the presence of a viscosity gradient normal to the disk wall, are displaced in the sense of increased instability when
the viscosity close to the wall is larger than the bulk viscosity.

The investigation of the stability of laminar flows can be performed decomposing the motion into the base flow (von
Karman, 1921) whose stability is to be examined, and a superimposed perturbation motion (Schlichting, 1968). In most
cases it is assumed that the perturbation quantities are small compared to those of the base flow. The base flow is
a solution of the Navier-Stokes equations. The superimposed perturbation is assumed to be small in the sense that
all quadratic terms of the perturbation can be neglected compared to the linear terms. Subtracting the Navier-Stokes
equations of the base flow from the Navier-Stokes for the flow with perturbations, and ignoring all terms quadratic in
the perturbation velocities, a linearized set of equations for the evolution of the perturbation quantities is obtained.

The perturbation is considered to be constituted of single partial perturbations or modes. At this stage we assume
that the perturbation variables are separable and look for a solution in the form:
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where w is a complex number, with R(w) and S(w) being, respectively, the frequency and the rate of growth of the
perturbation. Parameters a and 8 are the components of the perturbation wave-vector along the radial and azimuthal
directions.

Inserting the form of the perturbation, an ordinary differential equation is found for the amplitude of the perturbation.
The stability analysis of a laminar flow is now an eigenvalue problem of the perturbation differential equation, with
appropriate boundary conditions.

The linearized momentum equations for the perturbations reduce to Eqs. 2.20-2.21 given by Malik (1986), in the
case of constant viscosity fluids. For the case of a viscosity profile can be rewritten in the form:
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where ao, -, a4, bo, b1, co, c1, do, d1, d2, qo, q1, q2, and so are known complex functions of the base velocity and viscosity
profiles, and of parameters a, beta, and R (Pontes et al. 2002).

Eq. (3) defines a generalized eigenvalue/eigenfunction problem. The eigenfunctions h and 7 are the normal modes
of the model, the imaginary and real parts of each eigenvalue w being, respectively, the rate of growth and the angular
velocity of the perturbation relative to the angular velocity of the disk. The generalized eigenvalue/eigenfunction problem
is solved numerically. Space derivatives are represented by second-order discrete formula, transforming the original
problem in a generalized eigenvalue/eigenvector problem.

For a given viscosity profile the parameter space of the problem contains three variables, the Reynolds number R
and the perturbation wave-vector components o and .

The results are presented in the form of neutral stability curves ($(w) = 0) for the case of constant viscosity fluids.
The neutral curves are plotted in the 8 x R and « x R planes, for specified values of R(w) = wr.

Building the neutral curves requires finding the set of points ¢(s) = (a(s), 8(s), R(s)) that satisfy F (c(s)) = 0, where
F:R?*— > R?is given by F = (3(w), R(w) —w,)T. The neutral curves are built using a Predictor-Corrector Continuation
method described in the following sections. Here, we will give an overview of the solution method:

e The perturbation frequency w, is specified and an initial point cg, in the parameters space a, 3, R is given. This
point is not necessarily on the neutral curve;

e This initial point is corrected using an inexact Newton iteration given by
gt =d —F()TF() (4)
where F'(vo)7 is the pseudo-inverse of Moore-Pen rose of the Jacobian of F. The Jacobian is computed numerically,
using a finite difference approximation.
e To obtain an initial estimate of the next point over the curve, a Predictor step is employed, based on the first
order Euler method:

iy =ci+ht(F'(c:)) (5)

where h is a suitable step size, and t(F’(c;)) is the tangent vector to curve c(s).

e The value ¢, is corrected in a Corrector step using Eq. (4) iteratively until a satisfactorily converged value is
obtained.

e The generalized eigenvalue/eigenfunction problem required to evaluate F'(c(s)) is solved numerically, using an
Inverse Power Method double precision zgipm routine for complex generalized non-symmetric eigenproblems, that
takes advantage of the sparsity of the coefficient matrices.



2. Predictor corrector methods

Before we talk about the predictor corrector methods, let us describe the continuation methods or homotopy
methods, regarded as forerunners of the PC methods (Stoer, 1993), (Eugene, 1990). Suppose one wishes to obtain the
solution of a nonlinear system of n equations in n variables and a priori knowledge about concerning zero points is not
available.

The iterative method employed to solve the system can fail, because poor starting values are likely to be chosen. As a
possible remedy, one defines a homotopy F : R**! — R™ and attempt to trace an implicitly defined curve c(s) € F~1(0)
from a starting point to a solution point. the arclength parameter is consider a natural parameter for the curve.

The curve ¢, parametrized with respect to arclength s, may be regarded as the solution of an initial value problem
which is obtained by differentiating the equation

F(c(s)) =0 (6)
with respect to s:
(€e=0, ledl=1,  ¢(0)=co. (7

Equation(7) seems to be a more complicated problem to solve than Eq(6). In the fact, but the solution curve ¢ consists
of zero points of F' , and as such it enjoys powerful local contractive properties with respect to iterative methods.

The general idea of PC methods is to numerically trace the curve ¢ by generating a sequence of points along the
curve satisfying a chosen tolerance criterion. This sequence is obtained by numerically integrating Eq(7) very coarsely,
and then locally use an iterative method for solving Eq(6) as a stabilizer.

2.1. Predictor

The predictor step corresponds to numerically integrate Eq(7). Its scope is to orient the search of points along
the curve. Generally, the the most used kind of predictor is know as the Euler predictor and take the form

Vi1 = ui + ht(F (ui)), (8)

where h > 0 represents a “step size” and t(F’(ui)) € R™! represents the unique tangent vector induced by F’ satisfying
three conditions:
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Later it will be discussed in detail how A is to be chosen and how ¢ is then obtained. There are other kinds of predictors
and they are called high order predictors and can be obtained by interpolating the points belonging to the curve c. The
Euler predictor can be consider as a first order predictor. To make a robust and efficient predictor corrector method we
have to develop an effective step size adaptation and an efficient incorporation of high order predictors.

2.2. Corrector

A straightforward way to solve the problem Eq(6) in the corrector step is to use a Newton type method. As it
is well know, the Newton’s methods takes the form

Tir1 = & — F'(x5) -1 F(x4) (12)

but the problem is that the Jacobian F’ is not a square matrix and cannot be inverted. Hence, Newton’s method has to
be modified. At this point, we introduce a suitable right inverse of F' denoted by F'" to replace the inverse Jacobian
matrix in the Newton formula. Such a suitable right inverse is provided by the Moore-Penrose inverse defined as

Ft = FY(FFH™! (13)

where Fis a n x (n + 1) matrix with maximal rank.
Now we need to calculate the tangent vector and the Moore-Penrose inverse. To obtain t(F') and F'", we use a QR
decomposition of F’, which is given by

W=Q(§) (14)
where @ is an (n + 1) x (n + 1) orthogonal matrix and R is a nonsingular n X n upper triangular matrix.

To determining the Moore-Penrose inverse, we have F't = F*(F'F'*)~!, and from F'* = Q( (1)? ) and F' =
(R, 0)Q" we obtain

Ft=Q ( (R:)%_l ) (15)



As is usual in solving linear systems of equations, we do not invert R, but we rather calculate w = F'*b by forward
solving R’y = b.

For the tangent vector, if ¢ denotes the last column of Q, then F't = 0 and ||t|| = 1. Note that (F*,t) = Q ( (1)3 (1] )

!
implies det ( f; ) = det(F*,t) = det Q det R.

Now, sign det R is easily determined. The sign of det @) is usually easily obtained as well. For example, if Givens
rotations are used, it is equal to unity. If Householder reflections are used, each reflection changes the sign, so sign
detQ = (—1)? where p is the number of reflections which are involved in the factorization of F* by Householder’s
method.

To obtain the QR decomposition of F’ we use the Givens rotations methods acting on two co-ordinates described by
S1 S2

a matrix G =

) such that s? +s2 =1
—S82 S1

2.3. Step-length Adaptations for the predictor

To obtain a PC method more powerful and able to build curves more complicated with affordable computational
costs, we need to incorporate an automatic strategy for controlling the step length in the method. This is due to the fact
that the Newton’s methods do not assure convergence to the solution of the curve and then we need to assure that the
point given by the predictor step is sufficiently close to the curve. The basic idea behind this strategy is to observe the
performance of the corrector procedure and then to adapt the step length h > 0 accordingly. This step length strategy is
based upon a posteriori estimates of the performance of the corrector process in order to answer the following question:
given the manner in which the corrector process was performed, which step length would have been the “best” for the last
predictor step. This “ideal” step length is determined via asymptotic estimates, therefore it receives the name Steplength
Adaptation by Asymptotic Expansion, and it is then taken as the step length for the next predictor step. This strategy
depends primarily upon two factors: the particular PC method being utilized and the criteria used in deciding what
performance is considered “best”.

An intuitive criteria to govern the step length can be the distance to the curve approximated by the formula

8(u, h) = ||F'(v(h)) " F(v(h))| (16)

where v(h) is the point given by the predictor step with step length h, F'(v(h))" and F(v(h)) is the Moore-Penrose
inverse of the Jacobian matrix and the function value evaluated in the point v(h) respectively and u is the last calculated
point belonging to the curve. Another useful criteria is the contraction rate of the corrector process.defined as the
quotient of the first two successive Newtons steps

_ I H (w(h)) " H (w(h)) ||
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(17)

where w(h) is the point given by the corrector process starting in the point v(h). Since Newton’s method is locally
quadratically convergent, it is clear that &(u, h) will decrease if h decreases and hence v(h) approaches F~1(0).
To estimate the step length for the next predictor process we make use of the approximated formulae

h=nh W) (18)
- 5
h=nh S (19)

where h represents the step length to the next predictor step and & and 5 represent the nominal contraction rate and
distance of the curve respectively. The choice of & and 8 will generally depend upon the nature of the problem at hand,
and on the desired reliability with which we want to traverse F~'(0).

Supposing that an initial point u belonging to the curve is given, we can predict the point u, with an initial step
length h and calculate the contraction rate and the distance to the curve as function of the point u, and the step length
h. The corrector process is then employed and a new point u,41 belonging to the curve is determined. The deceleration
factor f receives the largest value between swh) and M) and hence we have b = 2. It can happen that the corrector
process, starting from the point given by the predictor step with step length h, does not converge to the curve; then the
predictor step is applied again at the same point, however, with a new step length smaller than the last. This procedure
is repeated until the corrector process converges. When the corrector process converges, the step length for the next
predictor step is given by the maximum value between hmax and h x f and this permits to increase or to decrease the
step length according to the part of the curve that is being traced.

2.4. High order predictors
As it was seen previously, in Euler predictor we trace the curve by tangent lines. In the case of high order

predictors we trace the curve by interpolating the already determined points by polynomials. Using this approach, the
computational time spent can be reduced because the predicted point is closer to the curve than the point obtained by



the Euler formula. We used the interpolating polynomial which uses the tangents ¢ gave by the Hermite formula which
provide more precision than the Newton formula. In principle, we can use as many points as we wish, hence producing
a polynomial with arbitrary degree n. However an excessive quantity of points implies in a polynomial with elevated
degree inducing instability in the solution of the problem.

In order to use the interpolating polynomial P,, we need to express it in terms of a suitable parameter {. The
arclength parameter s would be ideal to use, however it gives cause for additional complexity of obtaining precise
numerical approximations of the arclength s;, such that c(s;) = u;. We therefore use a local parametrization ¢ induced
by the current approximation t = ¢t(F '(u»)), and || ¢ [|= 1. This local parametrization c(£) is defied as the locally unique
solution of the system

Flu)=0 (20)

te(un+Et—u)=0 (21)

it follows immediately that ¢(&;) = u; were & =t- (u; — u,) and differentiating Eq(20) and Eq(21) with respect to £
yields

de(§) _ &)

de(g) _ _cs) 22
d¢ t-¢(s) (22)
The Hermite formula for the interpolating polynomial is given by
P(h) =" ai(h — o)’ (23)
i=0
where a; = f[zo, z1, ..., Zi], (h—x0)" = (h—20)(h — 21)...(h — 2i-1), (h — 20)° =1 and the terms a; can be
obtained from the table below of divided differences
zo  flzo]
1 fle]  flwo, m1]
zy  flzo]  flor,@a]  flwo, 1, 2] (24)
w3 flzs]  flwo, @3] flwr, e, @8] flwo, z1, w2, ws]
where the entries of the tables are given by
i =& =1- (Ui —un) (25)
flos] = wi (26)
t; .
fles, il = 7 ifei = i (27)
flziy oy Tigr] = Fl@itt, o Tigk] = FlBir s Bitea] otherwise. (28)
Ti+k — T4
In this way, a predictor of degree n takes the form
v = flxo] + flxo, z1](h — zo) + flxo,x1,22](h — xo)(h — x1) + ... + f[To, Z1, -, To](h — Z0)...(h — Tp—1). (29)

If the PC method presents a high order predictor, the step length strategies can involve controlling the polynomial degree.
The step-length control is essential in the strategies involving a high order predictor, but the control of the polynomial
degree is not. Depending on the problem at hands, good results can be obtained using the step length adaptation by
asymptotic expansion to high order predictors. Figures (1), (2), and (3) show various results obtained employing different
predictors to trace a circle with a unity radius. Note that using a high order predictor we can trace a larger distance
along the curve than the Euler predictor for identical entry parameters. This can be attribute to the fact that the error
performed by the high order predictor, see Fig.(1), is smaller than the Euler predictor, hence the high order predictor
allows a larger step length and can “walk” a larger distance than the first order predictor. The results obtained for each
kind of predictor to solve the problem F(z,y) = > + y® = 0 are presented in Tab.(1)

Table 1. Distance traversed along the curve defined implicitly by F(z,y) = x® + ¢y = 0 for each kind of predictor

Kind of predictor First point (x,y) | Last point (x,y) distance
Euler Predictor ( (0.102310594,-0.994756691) 4.81483
2nd Order Predictor | ( (0.989908831,-0.141702288) 6.14100
3rd Order Predictor | (0,1) (0.958164011,-0.286227576) 5.99289
( (
( (

4th Order Predictor -0.257910782,-0.966168737) | 4.97324
5th Order Predictor 0.060809271,-0.998153345) | 4.77317
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Figure 1: Performed error by the Euler and 3'¢ order predictors. Note that the step length of the 3™ order
predictor is about 25% larger than the Euler predictor.
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Figure 2: From left to right, curves obtained with 1¢, 2" and 3" orders predictors respectively.
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Figure 3: From left to right, curves obtained with 45 and 5°¢ orders predictors respectively.

As was expected, in Fig.(2) we can note that the second order predictor gets the best performance to trace the curve
because its interpolating has the same degree of the problem. Introducing a high order predictor we get a traversing
distance around 20% larger than a first order predictor. In the Fig.(3) we can note that predictors with degree of
interpolating polynomial higher than degree three do not present a good performance. We remember that for all kind of
predictors showed here we used the same problem parameters.

These kind of errors, showed in Fig.(3), observed when the degree of the polynomial exceeds the ideal degree of
interpolation, become worse when we have problems like F(z,y) = ' +y’ = 0 with ¢ and j assuming elevated values.
When this occurs it is better to take a predictor with lower degree of interpolation.

3. Conclusions

We studied Predictor-Corrector methods for the construction of the neutral stability curves based on the hydrody-
namic stability of rotating disk flows to small disturbances, where the fluid viscosity varies along the axis of the rotating
and presented the linear equations governing the evolution of spiral perturbations imposed to the steady flow. These
equations reduce to those presented by Malik (1986) in the case of constant viscosity fluids. Comparison of our results
for constant viscosity flows, concerning the coordinates of the minimum of the neutral curve for stationary disturbances
with results existing in the literature indicate good agreement and provide validation of our numerical code.

The numerical method used to determine the neutral-curve is a numerical continuation method know as predictor-
corrector method. This numerical method is an interesting way to solve the problem of finding the hydrodynamic
stability curves of a boundary layer over a rotating disk because it requires a much smaller computational costs than
other approaches.

The predictor-corrector method employed for the computation of the neutral curves is discussed. For the Euler
predictor, strategies for step adaptation are discussed. The technique is then extended to include high order predictor
methods. The numerical results, conducted on simple problems, show that second and third order predictors can lead to
a 25 % increase of the marching step with respect to a Euler step, therefore reducing the computational cost associated
to compute a fixed archlength of the stability curves. However, numerical experiments show that fourth and fifth order
predictors are prone to instabilities, producing in some occasions very bad predictions.
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