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Abstract. Instability maps for density wave and excursive instabilities that may occur in open two-phase flow natural circulation 
loop are presented. The one-dimensional homogeneous equilibrium model of two-phase flow is assumed. Linear system stability 
criteria are used for the analysis. Heater power, liquid inlet subcooling, system pressure and gravity acceleration are taken as 
parameters for the analysis. The stable region appears for lower values of the liquid inlet subcooling, bounded by two boundaries 
whereas the excursive instability region appears for higher values of the liquid inlet subcooling. It has been observed that 
increasing the system pressure has a stabilizing effect whereas reducing the gravity term has a destibilizing effect on the boiling 
loop system. 
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1. Introduction  
 

In the design of thermosyphon reboilers, solar collectors, and various cooling systems, the concept of two-phase 
natural circulation is usually adopted. The two-phase natural circulation mode is expected in hypothetical loss of 
coolant accident in a nuclear reactor as well as in some modern nuclear concepts and passive safety systems. In such a 
two-phase natural circulation mode, various types of flow instabilities occur depending on the system geometry, fluid 
properties and operating conditions, and often lead to abnormal behaviors such as limit cycle oscillations or premature 
burnout. That is, the self-sustained flow oscillations may cause mechanical vibrations of components, and affect the 
local heat transfer characteristics which can induce a boiling crisis. Thus the prediction of stable operating conditions in 
two-phase natural circulation systems is of primary concern. 

When the condenser section has a very large cross section compared to the other parts, the liquid level inside the 
condenser does not change during operations. Therefore, the velocity and enthalpy fluctuations at the exit of the riser 
section damp out and do not directly affect the flow behavior in the downcomer section. Thus the system is considered 
to be “open”, and the flow is very similar to the forced natural circulation with the constant driving head.  

The methods of stability analysis can be divided into two majors groups: one is based on linearized models and the 
other on full nonlinear models. The main advantage of the former method (Yadigaroglu, 1981; Lee and Lee, 1990,1991; 
Fukuda and Kobori, 1989; Lahey and Podowski, 1989, Podowski and Zhou, 1991) is that by perturbing the governing 
equations around a steady-state operating point, and converting the resultant linear model from time to frequency 
domain, exact analytical solutions can be obtained for the transfer functions. These transfer functions can be analyzed 
using well established quantitative criteria, to obtain rigorous conditions for the system stability. In fact, such an 
approach has been successfully applied to several boiling systems, from small-scale experimental facilities to 
commercial boiling water reactors (BWR) and other thermal power systems. Whereas the linear approach proves very 
useful in determining if a particular operating point of the system is stable (more specifically - linearly stable, since the 
equilibrium point may be unstable for sufficiently large perturbations) and in establishing the onset-of-instability 
conditions, it does not provide information about the properties of the response of an unstable system. To obtain such 
information, full nonlinear models should be used. In this case, the most common practice is via direct integration of the 
governing equations in the time domain (Rosa and Podowski, 1994; Podowski and Rosa, 1997; Moberg and Tangen, 
1986 and March-Leuba, 1986). 

In a previous work (Rosa, 2002) the author presented instability maps, for an open two-phase natural circulation 
loop, which show both static (excursive) and dynamic (density wave) instability boundaries, for several loop geometry 
configurations and sizing. The present work aims to show the effect of the fluid properties and the gravitational term on 
the stability of the loop and on the naturally induced circulation flow rate. The system pressure and the gravity 
acceleration are taken as parameter, respectively, for these purposes. The one-dimensional homogeneous 
thermodynamic equilibrium two-phase flow model as well as the Nyquist stability criterion for linear systems have been 
used for the analysis. 
 
2. Loop Modeling 
 

Let us consider the boiling loop shown in Fig. 1. The loop consists of five regions, namely, the adiabatic liquid 
region, heated liquid region, heated two-phase region, adiabatic two-phase region and the condenser region. Uniform 
heat flux is applied at the heater section. Since the cross-sectional flow area of the condenser is much larger than that of 
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the other parts of the loop, the liquid level is assumed to remain constant during each operation. For the purpose of the 
stability analysis, the following simplifying assumptions were also adopted: 

• one-dimensional flow; 
• homogeneous two-phase flow; 
• no subcooled boiling; 
• constant system pressure; 
• constant inlet subcooling. 

 
Figure 1. Natural circulation open loop schematic.  

 
Conservation equations of mass, energy and momentum for each region are: 
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The linear heat, , becomes zero in the adiabatic regions and, k  and  are the local loss coefficients at the inlet and 
exit line restrictions of the loop, respectively. The “δ ” is the Dirac function and  and  represent the locations of 
the restrictions. 
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The model formed by the set of equations just described is nonlinear. The stability of such a system in the small, i.e. 
for small perturbations to the system equilibrium point, can be studied using techniques which determine the nature of 
the poles of a system transfer function. Such techniques have been developed for systems of linear equations, therefore, 
first, perturbation techniques about a steady-state operating point are normally used to linearize the time domain 
nonlinear equations [Eqs. 1 through 3], then the resultant linear equations are Laplace transformed and integrated 
analytically along the loop in order to obtain suitable transfer functions to be analyzed (Park et al., 1984, Lee and 
Lee,1991), in the form 

 
lloop usGP δδ )(=∆                                                                                                                                                  (4) 

 
for 
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where lu  is the steady (time-averaged) liquid velocity, δ  and δ are the Laplaced transformed perturbations 
to the liquid velocity and loop pressure drop, and is the transfer function relating these quantities. 
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The liquid velocity, lu , should satisfy the loop system of equations at steady-state condition subjected to the open 

loop pressure drop boundary condition, . Therefore, 0=∆ loopP
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where the bars over the variables represent steady-state values. 

Applying the open loop boundary condition to Eq. (4), yields 
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Eq. (7) always has a solution for the steady-state case, δ , but can also have a nonzero periodic solution 

provided that, 
0=lu
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In this case, the loop is self-excited and will undergo self-sustained periodic oscillations at the angular frequency, 

, where . Eq. (8) is the characteristic equation of the boiling loop, therefore, the asymptotic stability of the 
system can be determined from the nature of the roots of this equation. All roots of this equation must have negative 
real parts for loop stability condition. This flow instability is classified as of the dynamic type since inertia and feedback 
effects are part of the process governing the flow. The Nyquist stability criterion has been applied for this purpose. 
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Another kind of flow instability analyzed in this work is the excursive instability. This flow instability is classified 
as of static type since a small perturbation from an original steady-state flow leads to a new steady-state condition 
which is not in the vicinity of the original state. Static instabilities are analyzed using steady-state laws and the 
threshold of instability is predicted from these laws. The criterion for instability of the loop shown in Fig. 1 (Lahey and 
Moody, 1984, Rust, 1979) is 
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therefore, excursive instability may occur only if there exists a flow rate range where the system pressure drop increases 
for decreasing flow rate.  
 
3. Results and Discussion 

 
Calculations were performed for water and the loop reference parameters presented in Table 1. In the first part of 

the analysis, it is shown the behavior of several two-phase flow parameters on the system stability threshold. In the last 
part of the analysis, it is studied the effect of system pressure and the gravity term on the stability and flow rate of the 
loop. For this purpose, the pressure is varied from 1 to 5 atm and the gravity acceleration from g to g/8 where g is the 
earth gravity acceleration at sea level. The liquid inlet subcooling varies from zero to the liquid saturation temperature. 

Fig. 2 shows two typical curves of the loop flow rate as function of the heater power for different degree of 
subcooling of the liquid entering the heater section. In the low power range, the increasing rate of flow driving head due 
to gravity is larger than that of the frictional pressure drop since the two-phase flow velocity is still very small in this 
range. Therefore, higher liquid velocity is induced by higher powers. In the higher power range there is an opposite 
trend since the frictional pressure drop is dominant due to the high two-phase velocity, therefore lower liquid velocity is 
induced by a higher power. Another important aspect observed in the curve for the higher inlet subcooling in Fig. 2b is 
that there is a power range ( ) where there are three velocity values (points A, B and C) for each power 
value which satisfy the open loop natural circulation condition whereas the curve for the lower inlet subcooling in Fig. 
2a shows that there is only one velocity value for each possible power. It has been shown in Rosa (2002) that point B, in 
Fig. 2b, satisfies the condition of excursive instability given by Eq. (9), therefore, the flow is unstable. In this case, a 
slight increase in flow at point B causes flow to excursively increase to the flow at point A. Conversely, a slight decrese 
in flow causes flow to excursively fall to point C. The decreased flow rate at point C could cause heater burnout which 
should not be allowed to occur. So, excursive instability is only possible in the power range which yields three steady-
state flow rate values for each heater power. As can be seen in Fig. 2a, there is no such a power range for smaller inlet 
subcoolings which indicates that this type of instability can only be observed for specific loop parametric conditions. 

maxmin PPP <<



Therefore, the excursive instability may only be possible for powers in a range, , if such type of 
instability can occur, for a specific liquid inlet subcooling. 

maxmin PPP <<

 
Table 1. Loop parameters used as reference for all calculations. 

 
Reference Loop Parameters 

 p (atm) 1 
g  (m/s2) 9.8  
D (m) 0.018 
c (m) 0. 
L (m) 1.15 
lo (m) 0.60 
d (m) 1.00 
H (m) 4.15 
b (m) 3.25 
Hc (m) 3.75 
ki 1000 
k0 10 
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Figure 2. Natural circulation flow rate as function of heater power for different liquid inlet subcoolings using the loop 
parameters in Table 1. 
 

Fig. 3 shows the stability map in the liquid inlet subcooling versus heater power plane for excursive (static) and 
density wave (dynamic) instabilities of an open natural circulation loop for the reference parameters in Tab. 1. As is 
shown in this figure, the two instability boundaries, boundaries A and B of the dynamically stable region get close to 
each other as the inlet subcooling increases and eventually merge depending on the operating conditions imposed. As 
can be seen in Fig. 4.a, for boundary A, the location of the transition from single to two-phase flow takes place near the 
top of the heater and varies very little along this boundary, therefore the gravitational and frictional two-phase flow 
pressure drops are basically given by the ones in the adiabatic section. The unstable region in the left side of boundary 
A in Fig. 3 is characterized by a very small exit heater quality, as shown in Fig. 4b, mainly at small powers leading to 
larger changes in the gravitational two-phase flow pressure drop than that in the frictional one, since the two-phase flow 
velocity is small (see Fig. 5.a and 5.b). Therefore, the gravitational pressure drop component in the unheated riser plays 
the dominant role for small powers. As can be seen in Fig. 5.b, as the power is increased along boundary A, the rate of 
change in the frictional pressure drop overcomes the gravitational one, therefore the frictional pressure drop component 
becomes the dominant one, although the gravitational effect is still important. On the other hand, the exit quality in the 
unstable region in the right side of boundary B is high (see Fig. 4.b), this is because for such a high power, evaporation 
starts at lower locations of the heater and also the rate of increase of quality in the two-phase part of the heater is higher 
leading to a high two-phase flow velocity in the unheated riser, therefore the two-phase frictional pressure drop plays 
the dominant role in this region all over boundary B where the gravitational effect is always negligible, as can be seen 
in Fig. 5.b. As also can be seen in Fig. 3, the excursive instability region lies outside of the density wave one, therefore, 
the analysis of the density wave stability is sufficient for the purpose of stability analyses. Although it is not shown in 
Figures 4 and 5, the lines for both boundaries will merge in a very little increase of the liquid inlet subcooling to form a 



single curve, as can be observed in Fig. 3. This is not shown because it is very tedious to obtain additional points with 
the required precision and mainly because is not important for the proposed analysis. 
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Figure 3. Typical static and dynamic instability maps. 
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Figura 4. a) Relative Subcooled length [ )( cd −λ ] and b) Flow quality along both boundaries shown in Fig. 3 as 

function of the relative liquid inlet subcooling [ satsub TT∆ ]. 
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Figure 5. a) Two-phase flow velocity at the heater exit, and b) Ratio of the frictional to gravitational pressure losses in 
the two-phase part of the loop along both boundaries. 



Next, the effect of the gravitational term on the stability of the loop and the naturally induced flow rate will be 
analyzed. In order to study the effect of the gravitational term, the gravity acceleration will be varied. Figure 6 shows 
the effect of reducing the gravity acceleration on the stability and flow rate of the loop. As can be seen in Fig. 6.a, by 
reducing the gravity acceleration, both boundaries A and B move to lower values of the heater power for the same 
liquid inlet subcooling. Also both the dynamically stable and the statically unstable regions narrow down. Therefore, 
not only the average power but also the power range for stability is reduced by decreasing the gravity acceleration. Also 
can be observed in this figure that the maximun liquid inlet subcooling for stability is only slightly reduced. Therefore, 
as result of the gravity acceleration decrease, the capability of the system to transport energy should be reduced in order 
to mantain system stability. As also can be noticed in this figure, the region of static instability is moved to lower power 
values similarly to the dymamic stable region. Fig. 6.b shows the natural circulation flow rate as function of the heater 
power for a liquid inlet subcooling of 20 oC. As can be seen, the maximum induced flow rate decreases as the gravity is 
reduced because of the reduction in the driving head (buoyancy). Also can be seen in this figure that for the same 
gravity acceleration, in the low heat flux range, the increasing rate of driving head due to gravity is larger than that of 
frictional pressure drop, so that the higher flow rate is induced with the higher heating rate. The trend is opposite in the 
high heat flux range, where the frictional pressure drop plays the dominant role due to the high two-phase velocity. The 
thicker portion of each curve in Fig. 6.b corresponds to the range for which the system is stable. As can be observed, no 
matters the value of the gravity acceleration, this range is located in the upper part of the curves. 

The subcooled length and flow quality along each boundary are shown in Fig. 7. As can be seen, gravity has 
very little effect on the transition location between single and two-phase flows along boundary A and, consequently, on 
the flow quality at the exit of the heater. Along boundary B, the subcooled length and the flow quality have the same 
trends for different gravity accelerations. The subcooled length increases whereas the flow quality decreases slightly for 
a reduction in the gravity acceleration which indicates a slighty reduction in the power to flow rate ratio. 
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Figure 6. a) Stability maps; and b) Naturally induced loop flow rate as function of heater power for different values of 
gravity acceleration. 
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Figure 7. a) Subcooled length and b) Flow quality along both boundaries for differente values of gravity acceleration. 



The next results intend to show the influence of the system pressure, through the variation of the fluid 
properties, on the system parameters and stability of the loop. Figure 8 shows the stability maps and loop flow rates for 
1 and 5 atm system pressures. Also shown in this figure is the maximum permissible liquid inlet subcooling (MPLIS) 
which increases with the system pressure. As can be observed in Fig. 8.a, by increasing the pressure from 1 to 5 atm the 
dynamically stable region is considerably enlarged and the statically unstable region desappears. Also, the baundary A 
remains practically unchanged whereas the boundary B moves to much higher powers indicating that the power range 
for system stability at a specific liquid inlet subcooling is considerably increased by increasing the system pressure. 
Therefore, the effect of increasing system pressure is clearly of stabilizing the system. In regard to excursive instability, 
it is more unlikely to occur with pressurization of the loop.  

Figure 8.b shows the natural circulation flow rates for the two values of system pressure for a specific liquid 
inlet subcooling. Both flow rates have the same behavior, i.e., the flow rate initially increases with power reaching a 
maximum and then decreases with increasing power. The maximum flow rate is not much affected by pressure but the 
corresponding power is shifted to a higher value. The flow rates are basically the same at small powers but they differ 
considerably at high powers where the flow rate is higher for the higher pressure. This can be explained by considering 
the points on boundary B for both pressures. These are the right end points on the thicker portions of both curves shown 
in Fig. 8.b. As can be seen, they have basically the same flow rates, therefore the void fractions should also be about the 
same in order to have approximately the same two-phase frictional pressure drops. In order to have similar void 
fractions, for the higher pressure, the flow quality should be higher, as can be seen in Fig. 9.b., which by its turn 
imposes a higher power. 
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Figure 8. a) Stability maps; and b) Naturally induced loop flow rates as function of heater power for different values of 
system pressure. The thicker portions of the curves refer to the stable system operating points. 
 

Figure 9 shows the flow quality along boundaries A and B for different pressures. As can be seen in Fig. 9.a, 
there is a small increase in the flow quality at boundary A as the pressure increases but the quality is still very small. On 
the other hand, the quality at boundary B increases substantially with the pressure, as is shown in Fig. 9.b. The quality 
variation along this boundary is similar for the different system pressures. For small liquid inlet subcoolings the quality 
is quite high. As the subcooling is increased the quality reduces and the reduction is slower as the subcooling 
approaches the maximum liquid inlet subcooling. Actually, it can be said that the quality remains almost constant for 
most of the liquid inlet subcooling range. Therefore, for a specific loop geometry and pressure, this information can be 
used to set a maximum permissible flow quality, for system stability, for the entire range of liquid inlet subcooling. This 
might not be very good only for small subcoolings where this approach may be too conservative. Figure 10 shows that 
the void fraction along boundary B is very little affected by the system pressure although the quality may vary 
significantly. In cases that the operating system pressure may change, this information can also be taken into account 
for avoiding instabilities of the loop.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Flow quality at (a) boundary A and (b) boundary B, for differente values of system pressure. 
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Figure 10. Void fraction variation along boundary B for different system pressure. 
 

Comparisons of the analytical results, using the homogenous equilibrium model and linear stability criteria, with 
experimental ones performed by Fukuda and Kobori (1979) have shown that the trends of boundary B reasonably agree 
except in the low liquid inlet subcooling range. Similarly, Lee and Lee (1991) have found the same results when they 
compared their analytical results against the experimental ones by Chexal and Bergles (1973). Therefore, the 
simplifying assumption of one-dimensional homogeneous two-phase flow may still yield good qualitative results for the 
high exit quality stability boundary except in the low liquid inlet subcooling range where certain deviations were 
observed. The same observations were made by Rosa and Podowski (1995) for a boiling channel with fixed Froude 
number ( ), using the time domain computer code DYNOBOSS (Rosa and Podowski, 1997) and the experimental 
data obtained by Saha and Zuber (1978). 

Fr

 
3. Comments and Conclusions 
 

It has been presented a loop modeling and a methodology based on linear criteria for obtaining stability maps for 
both density wave and excursive instabilities in open two-phase natural circulation loops. The dynamic stability region 
appears at the lower left part of the liquid inlet subcooling versus heater power plane, bounded by two boundaries 
whereas the excursive instability region appears at the upper right part of the map and eventually touches the line of 
maximum inlet subcooling. The effect of loop geometry and sizing was investigated in a previou work by the same 
author (Rosa, 2002) using the same modeling and methodology. The present work complements the other one showing 
the effects of both the fluid properties due to changes in the system pressure and the environment gravity acceleration 
on the loop parameters and stability.  

 



As the most important result of the present analysis, it was shown that reduction of both system pressure and 
gravity acceleration has the effect of destabilizing the system. It should be mentioned that the system stability trends, 
for system pressure variation, obtained herein agree with the experimental ones obtained by Fukuda and Kobori (1979). 
Although the two-phase flow model used in this work should still be experimentally checked regarding its applicability 
in a moderate to low gravity environment, mainly because the gravitational effects on two-phase flows are yet not 
entirely known, these preliminary results have shown that this conventional heat transport system can still be used in 
such an environment by making appropriate choices of system parameters such as loop geometry and sizing, flow 
restrictions, operating pressure, type of fluid, and so on. Besides, some interesting observations can be done from the 
results. For instance, it is noticed that the subcooled length along boundary A is basically the same for the entire range 
of liquid inlet subcooling operating conditions and it is not affected by changes in the gravity acceleration. Also, the 
flow quality increases considerably with increasing pressure at boundary B although the void fraction is very little 
affected. These kinds of information can be used to establish very simple and quick-check criteria that provide 
indications about the stability of the system. 

In the work by Rosa and Podowski (1995), the authors have showed that subcooled boiling and phasic slip play 
important roles in the stability of the system as previously reported by Saha and Zuber (1978). Therefore, in order to 
improve the results, it is important to use more elaborated models that incorporate such two-phase flow situations and 
then apply linear stability criteria. This will certainly yield a more powerful tool for stability analysis of two-phase flow 
systems. 
 
4. Nomenclature 
 

xsA  flow area 
db L,  lengths 

D  pipe hydraulic diameter 
f
g

 friction factor 
 gravity acceleration 

G  transfer function 
h  mixture enthalpy 

cHH ,  lengths 

oi kk ,  inlet and exit friction loss coefficients 
Lll o ,,

p
 lengths 

 pressure 
P  heater power 
q′  linear heat rate 
s  Laplace transform variable 
t  time 
u  mixture velocity 

lu  liquid velocity 
z  axial direction coordinate 

satT  liquid saturation temperature 

  
δ
λ

 perturbation symbol 
 boiling boundary transition 

ρ  mixture density 
ω  angular frequency 

P∆  pressure drop  

subT∆  liquid inlet temperature subcooling 
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