
 

APPLICATION OF THE HÉNON’S ORBIT TRANSFER PROBLEM TO 
MANEUVER A SATELLITE IN A CONSTELLATION  
 
Antonio Fernando Bertachini de Almeida Prado  
Instituto Nacional de Pesquisas Espaciais – INPE/DMC 
Av. Dos Astronautas 1758 – Jardim da Granja 
12227-010 São José dos Campos, SP 
Brazil  
prado@dem.inpe.br 
  
Abstract. The main objective of the present paper is to study minimum fuel maneuvers to change the position of a spacecraft that 
belongs to a constellation. The control used is a bi-impulsive maneuver, where the first impulse is applied in the initial position of 
the satellite to send it to a transfer orbit that will cross the desired final position of the spacecraft. Both initial and final position of 
the satellite belongs to the same Keplerian orbit. The goal is to find the transfer that has the minimum total increment in velocity 
and that perform the desired maneuver. 
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1. Introduction  
 

In this paper, the problem of transfer orbits from one body back to the same body (known in the literature as the 
Henon’s problem) is used to study maneuvers that has the goal of changing the position of a satellite in a constellation, 
in the sense of going to a different point (true anomaly) of the same orbit. The net result is a relocation of the satellite in 
the same orbit. The problem of transfer orbits from one body back to the same body has been under investigation for a 
long time. Hénon (1968) originally developed a timing condition for orbits that allow a spacecraft to leave a massless 
body M2, go in an orbit around the primary M1 and meet M2 again, after a certain time. This was treated as the 
problem of consecutive collision orbits in the restricted three body problem. Several authors then worked on 
improvements of this problem. Hitzl (1977) and Hitzl and Hénon (1977a and 1977b) studied stability and critical orbits. 
Perko (1974) derived a proof of existence and a timing condition for what was shown later to be a special case of 
Hénon's work. Results for the perturbed case µ (mass of M2 divided by the mass of M1) � ! � �ZKHUH 02 has non-
negligible mass and perturbs the orbit of M3 around M1) also appeared in the literature. Some examples are the papers 
published by Gomez and Ollé (1991a and 1991b) and Bruno (1981). Howell (1987) and Howell and Marsh (1991) 
extended Hénon's results for the case where the orbit of M2 is elliptic. 

 In the present research this problem is formulated as that of an orbit transfer, as done previously in Prado (1993), 
which can be solved with Gooding's implementation of the Lambert's problem (Gooding, 1990). In the approach used 
here, the second body M2 is a fixed point in the orbit of the spacecraft and not a real body, but this nomenclature is used 
to facilitate the comparison with the results obtained from the consecutive collision orbits problem approach. Both 
cases, with the circular or elliptic orbits for the spacecraft are considered in the present research. The implementation 
developed here is generic with respect to the angle that the spacecraft has to be shifted. These transfer orbits are studied 
in terms of the ∆V and the time required for the transfer. The ∆Vs are plotted against the transfer time for several cases 
and a family of transfer orbits with very small ∆V (on the order of 0.001 in canonical units, a system of units where the 
gravitational constant of M1, the angular velocity of the spacecraft and the distance between M1 and the spacecraft are 
all unity) is shown to exist in almost all cases studied. These orbits are studied in detail. They consist of a family of 
slightly different orbits (when compared to the orbit of M2) that meet all the requirements to provide the transfer 
desired. A relocation of a geostationary satellite is shown as an example of a practical application of this theory.  
 
2. Formulation of the Problem 
 

Let M1 be the main body of the system (the Earth, in the example used here) and M2 be a fixed point in a circular or 

elliptic orbit around M1. The massless spacecraft M3 leaves the point M2 from a position denoted by P (t = -τ), follows 

an orbit around M1 and meets again with M2 at a point Q (t = τ). The basic equations of the Kepler problem apply. The 
canonical system of units is used. Figure 1 shows a sketch of the transfer. 

The solution to be found is the coordinate of the point P as a function of the transfer time. The solution is not 
unique, and a graph including many solutions was published by Hénon (1968). He plotted η/π (where η is the redefined 
"eccentric anomaly" of the point P) against τ/π (where τ is half of the transfer time). Another problem that is considered 
in the present research is the calculation of the ∆V and the time required for each of these transfers, in a search for 
transfer orbits with small ∆V. The solution consists of plots of the ∆V against the time required for the transfer (both in 
canonical units). A detailed study of the transfer orbits with small ∆V is included. 
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Figure 1. Orbit Transfer from M2 Back to M2. 

 
2.1. Lambert’s Problem Formulation 
 

A different approach used in the present research formulates Hénon's problem as a Lambert's problem. The 
Lambert's problem can be defined as (Gooding, 1990): 

"An (unperturbed) orbit, about a given inverse-square-law center of force is to be found connecting two given 
points, P and Q, with a flight time ∆t (= t2-t1) that has been specified. The problem must always have at least one 
solution and the actual number, which is denoted by N, depends on the geometry of the problem - it is assumed, for 
convenience and with no loss of generality, that t > 0." 

Using this formulation, Hénon's problem can be defined in the following way: "Find an unperturbed orbit for M3, 

around M1, which leaves the point P at t = -τ and goes to point Q at t = τ". Since M2 is assumed to have zero mass, it 

has no participation in the equations of motion of the system. Its only use is to relate the time τ with the eccentric 
anomaly η, in such way that M3 has the same position as M2 at P and Q at the times t = -τ and t =τ , respectively. 
 
3. Mathematical Formulation 
 

In terms of mathematical formulation, Hénon's problem formulated as a Lambert's problem can be described as 
follows. The following information is available: 

1. The position of M3 at t = -τ (point P). It can be specified by the radius vector R1 and the angle -τ. R1 can be 

related to -τ by using the equation R1 = a(1-e2)/(1+ecos(-τ)) for the orbit of M2, since M2 and M3 occupy the same 

position at t = -τ; 
2. The position of M3 at t = τ (point Q). It can be specified by the radius vector R2 and the angle τ. R2 can be 

related to τ by using the same equation used in the above paragraph; 
3. The total time for the transfer, ∆t = 2τ. Remember that the angular velocity of the system is unity, so τ can be 

considered to be the time as well as the angle; 
4. The total angle the spacecraft must travel to go from P to Q, that is called φ. For the case where the orbit of M3 is 

elliptic this variable has several possible values. First of all, there are two possible choices for the transfer: the one that 
uses the direction of the shortest possible angle between P and Q (that is called the "short way"), and the one that uses 
the direction of the longest possible angle between these two points (that is called the "long way"). Which one is the 
shortest or the longest depends on the value of τ. After considering these two choices, it is also necessary to consider the 
possibilities of multi-revolution transfers. In this case, the spacecraft leaves P, makes one or more complete revolutions 
around M1, and then goes to Q. Then, by combining these two factors, the possible values for φ are: 2τ+2mπ and  2(π-

τ)+2mπ, where m is an integer that represents the number of complete revolutions during the transfer. There is no upper 
limit for m, and this problem has an infinite number of solutions. In the case where the orbit of M3 is parabolic or 

hyperbolic, φ has a unique value. The multi-revolution transfer does not exist anymore (the orbit is not closed), and the 
only direction of transfer that has a solution is the one that makes the spacecraft goes in a retrograde orbit passing by 
periapse at t = 0. 

The information needed (the solution of the Lambert's problem) is the Keplerian orbit that contains the points P and 
Q and requires the given transfer time ∆t = 2π for a spacecraft to travel between these two points. This solution can be 
specified in several ways. The velocity vectors at P or Q are two possible choices, since the corresponding position 
vectors are available. The Keplerian elements of the transfer orbit is also another possible set of coordinates to express 



 

the solution of this problem. In the implementation developed here, all three sets of coordinates are obtained, since all 
of them are useful later. 

To obtain the ∆Vs, the following steps are taken: 
1. Find the radial and transverse velocity components of M2 at P and Q. They are also the  velocity components of 

M3 just before the first impulse and just after the second impulse, respectively, since they match their orbits at these 
points. They are obtained from the equations (Danby, 1988): 
 

 Vr = 
e sin(

a(1- e )2

ν)
 Vt = 

1+ e cos( )

a(1- e )2

ν
                                                                (1) 

 
where Vr and Vt are the radial and transverse components of the velocity vector, a and e are the semi-major axis and the 

eccentricity of the transfer orbit and ν is the true anomaly of the spacecraft. 
2. Find an unperturbed orbit for M3 that allows it to leave the point P at t = -τ and arrive at point Q at t = τ. This 

orbit is found by solving the associate Lambert's problem, as explained in the next section. At this point the total time 
for this transfer, 2τ, �LV DOUHDG\ NQRZQ� 

3. Find the velocity components at these points (P and Q) in the transfer orbit determined in ii). They are the 
velocity components for M3 just after the first impulse and just before the second impulse. They are provided by 
Gooding's Lambert routine (Gooding, 1990). 

4. With the velocity components just after and just before both impulses it is possible to calculate the magnitude of 
both impulses (∆V1 and ∆V2) and add them together to get the total impulse required (∆V) for the transfer. 
 
4. Gooding’s Implementation of the Lambert’s Problem 

 
The solution of the Lambert's problem, as defined in the previous paragraphs, has been under investigation for a 

long time. The approach to solve this problem is to set up a set of non-linear equations (from the two-body problem) 
and start an iterative process to find an orbit that satisfies all the requirements. There is no closed-form solution 
available for this problem. The major difficulty is to choose the best set of equations and parameters for iterations to 
guarantee that convergence occurs in all cases. The routine used in this research is due to Gooding (1990). He chooses 

± 1- s / 2a  as the parameter for convergence, where "a" is the semi-major axis of the transfer orbit and "s" the semi-
perimeter of the triangle formed by P, Q and M1. He also makes several substitutions of variables, trying to find the 
best set of equations to guarantee convergence in all cases. His implementation is able to find all the possible solutions 
of the Lambert's problem, including "long way", "short way" and "multi-revolution" transfers. He gives the velocity 
vectors at P and Q and the Keplerian elements of the transfer orbit in his solution. More detail can be found in Gooding, 
1990. 

Including all phases of the present research, Gooding's routine has been called about 3 million times with no failure 
detected.  

 
5. Results 
 

In this section some results are shown in the problem of finding the ∆Vs required for the transfers to be able to get 
the transfers with the minimum consumption. Plots of (∆V)x(τ/π) were made for thousands of possible transfer orbits. 
Five orbits for M2 around M1 are used: 

1-) The circular orbit with a = 1. 
2-) The elliptic orbit with e = 0.4 and a = 1, with M2 passing by periapse at t = 0. 
3-) The elliptic orbit with e = 0.4 and a = 1, with M2 passing by apoapse at t = 0. 
4-) The elliptic orbit with e = 0.97 and a = 1, with M2 passing by periapse at t = 0. 
5-) The elliptic orbit with e = 0.97 and a = 1, with M2 passing by apoapse at t = 0. 

The results for orbits 1, 2 and 4 are shown in Fig. 2. The vertical axis shows the total ∆V in canonical units and the 
horizontal axis shows τ/π, where τ is half of the transfer time. Only elliptic transfer orbits are included in these plots, 
since the hyperbolic or parabolic transfer orbits are too expensive, in terms of ∆V (always more than 1.6), to be useful. 
In these figures, τ/π  varies from 0 to 14 and the maximum number of complete revolutions allowed for M3, while in its 
transfer orbit, is also 14. This means that we restrict ourselves to the orbits contained in a square region with side 14 (0 
≤ τ/π �≤ 14 and 0 ≤ ν/π�≤ 14). 

 An examination of those figures shows the existence of points (orbits) with very small ∆V. They appear in several 
locations in the plot and they reveal a whole family of small ∆V transfer orbits. In all cases studied in this research, this 
family appears in the "short transfer time" part of the graph (small τ). A more detailed plot of (∆V)vs(τ/π) is shown in 
Fig. 3. It includes only the orbits where ∆V < 0.5 and it is restricted to orbit 1 (circular orbit) only. Plots for the orbits 3 
and 5 are similar to the plots for orbits 2 and 4, respectively, and are omitted in the present text to save space. It is 



  

possible to see that the local minimums increase with time after , τ/π � �� $Q LQYHVWLJDWLRQ IRU � τ/π  varying from zero 
to 200 (and with the maximum number of complete revolutions for M3 equal to 200) was done, and no more orbits with 

∆V < 0.1 were found. 
 

 
 
Figure 2a. (∆V) vs (τ/π) for Orbit 1 for M2. 
 

 
 
Figure 2b. (∆V) vs (τ/π) for Orbit 2 for M2. 
 



 

 
 
Figure 2c. (∆V) vs (τ/π) for Orbit 4 for M2. 

 
 
Figure 3. (∆V) vs (τ/π) for ∆V < 0.5 (Orbit 1 for M2). 
 

Table 1 shows the main characteristics of the orbits with ∆V < 0.1 found in the circular and elliptic cases. It is 
interesting to see that for the circular case (see the part e = 0 in table 1) most of the orbits appear in pairs, with almost 
identical values of τ/π.  A good example is the pair formed by the first two orbits in Table 1: τ/π = 1.400 and τ/π = 
1.410. In each pair one orbit has the periapse in a positive abscissa and the other one has the periapse in a negative 
abscissa. In this Table the orbit of M2 is assumed to be elliptic with several values for the eccentricity. Both cases, M2 
at periapse at t = 0 and M2 at apoapse at t = 0 are considered. Fig. 4 shows some of those orbits. 

Table 1 and Fig. 4 show the mechanism of the majority of these transfer orbits. They consist of orbits with slightly 
different semi-major axis and eccentricity (compared with the orbit of M2) and they have a periapse coincident with the 

periapse of the orbit of M2. They have mean angular velocity (n) such that 2τ (1-n) � ±2π. Then, after M3 makes m 
complete revolutions in its transfer orbit, M2 makes m+1 or m-1 complete revolutions in its own orbit and they can 

meet each other at the common periapse, after the time 2τ. 
 



  

 

 
Figure 4. Some Transfer Orbits with Small ∆V. 
 
 
6. Practical Application 
 

To show one possible practical application for these orbits, this theory is applied in a transfer for a satellite from one 
point in a circular geostationary orbit to another point in the same orbit (a point 180 degrees ahead of the initial point is 
used as an example, but the scheme proposed here can be used for any transfer angle desired). This problem is very 
important nowadays. Its solution can be used to transfer a geosynchronous satellite, to use it above a point with different 
longitude on Earth. Fig. 5 shows this situation. 
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Figure 5. Orbit Transfer for a Geosynchronous Satellite. 
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Figure 6. (∆V)vs(τ/π) to Transfer a Geosynchronous Satellite (Elliptic Transfer Orbits). 

 
Fig. 6 shows the (∆V)vs(τ/π) for elliptic transfer orbits. Hyperbolic transfer orbits are also available, but they 

have ∆V too large to be useful. It is assumed that the change in longitude desired for the satellite is 180 degrees. Table 2 
shows the whole family of small ∆V orbits. Under the assumption that the orbital velocity of the satellite is 3075 m/s 
(Wertz and Larson, 1991) and its orbital period is 1 day, Table 2 shows the real values of ∆V and 2τ (total time required 
for the transfer). The mechanism used by these transfers is to insert M3 in an elliptic transfer orbit that have a periapse 
coincident with the periapse of the orbit of M2. These transfer orbits have a mean angular velocity (n) smaller than 1, 

such that  (1-n)2τ � π. Then, in the same time that M3 makes m revolutions in its transfer orbit, M2 makes m+(1/2) 
revolutions in its own orbit and M3 meets with a point 180 degrees ahead of its initial point at Q. The same comment 

about other multi-revolution possible transfer orbits with a lower ∆V made in the previous cases are valid here. In this 
case M2 does not exist as a real body. It is only a reference point in orbit and, in consequence, its mass is really zero. 
For this reason, this example fits very well the model used and the results found here are expected to be in close 
agreement with the real world. 
 
 
7. Conclusions 
 

The problem previously called "consecutive collision orbits" in the three-body problem is formulated as a problem 
of transfer orbits from one body back to the same body. Using this approach, Hénon's problem became a special case of 
the Lambert's problem. 

Gooding's implementation of the Lambert's problem (Gooding, 1990) is used to solve this problem with great 
success. 

The ∆Vs and the transfer time required for these transfers are calculated. Among a large number of transfer orbits, a 
small family is found, such that the ∆V required for the transfer is very small. These orbits and their properties are 
shown in detail. 

A practical applications for these orbits are studied in detail: a transfer for a satellite from a point in a circular 
geosynchronous orbit to another point in this same orbit, 180 degrees ahead of its initial point.  

The possibilities of transfers like this one is open for several types of missions and the algorithm developed here can 
be used to relocate a satellite to a different position in one orbit. 
 
 
 
 



  

Table 1. Transfer orbits with ∆V < 0.1 for the circular and elliptic case 
 

 τ/π a e η/π ν/π L P S A ∆V 
 1.400 0.993 0.0216 1.406 1.400 1 1 1 1 0.0417 
 1.410 1.003 0.0105 1.406 1.410 1 0 1 0 0.0204 
 2.440 0.997 0.0167 2.445 2.440 1 0 1 0 0.0331 
 2.450 1.002 0.0149 2.445 2.450 1 1 1 1 0.0295 

e=0 3.460 0.999 0.0036 3.461 3.460 1 1 1 1 0.0072 
 3.470 1.003 0.0279 3.461 3.470 1 0 1 0 0.0555 
 4.460 0.997 0.0310 4.469 4.460 1 0 1 0 0.0618 
 4.470 1.000 0.0005 4.469 4.470 1 1 1 1 0.0010 
 5.470 0.998 0.0169 5.475 5.470 1 1 1 1 0.0336 
 5.480 1.001 0.0146 5.475 5.480 1 0 1 0 0.0292 
 6.990 1.108 0.9777 5.991 6.990 0 0 1 1 0.0955 
 1.410 1.4386 1.0025 0.1085 1.4729 1 0 1 0 0.0453 
 2.440 2.4133 0.9979 0.1125 2.3793 1 0 1 0 0.0435 

e2=0.1 3.460 3.4930 0.9995 0.0962 3.5238 0 0 1 0 0.0404 
S3=-1 4.470 4.4380 1.0002 0.0975 4.4078 1 0 1 0 0.0398 

 5.480 5.5072 1.0011 0.1142 5.5436 0 0 1 0 0.0500 
 7.000 6.0000 1.1082 0.1879 6.0000 0 0 1 1 0.0869 
 1.400 1.3747 0.9962 0.1132 1.3420 1 1 1 1 0.0411 

e2=0.1 2.440 2.4772 0.9970 0.0829 2.5036 0 1 1 1 0.0503 
S3=+1 3.460 3.4293 0.9999 0.1009 3.3982 1 1 1 1 0.0389 

 4.470 4.5018 1.0000 0.1003 4.5337 0 1 1 1 0.0402 
 5.470 5.4435 0.9989 0.1148 5.4078 1 1 1 1 0.0479 

e2=0.2,
S3=-1 

7.000 6.0000 1.1082 0.2782 6.0000 0 0 1 1 0.0793 

e2=0.2, 
S3=1 

6.000 5.0000 1.1292 0.2916 5.0000 1 1 1 0 0.0917 

e2=0.5, 
S3=-1 

5.000 4.0000 1.1604 0.5691 4.0000 1 0 1 1 0.0789 

e2=0.5 4.000 3.0000 1.2114 0.5873 3.0000 1 1 1 0 0.0993 
S3=+1 4.000 5.0000 0.8618 0.4198 5.0000 1 1 1 0 0.0939 

 6.000 5.0000 1.1292 0.5572 5.0000 1 1 1 0 0.0655 
e2=0.6 4.000 3.0000 1.2114 0.6698 3.0000 1 1 1 0 0.0863 
S3=+1 4.000 5.0000 0.8618 0.5358 5.0000 1 1 1 0 0.0810 

 6.000 5.0000 1.1292 0.6458 5.0000 1 1 1 0 0.0568 
 3.000 2.0000 1.3104 0.7711 2.0000 1 0 1 1 0.0985 

e2=0.7 3.000 4.0000 0.8255 0.6366 4.0000 1 0 1 1 0.0897 
S3=-1 5.000 4.0000 1.1604 0.7415 4.0000 1 0 1 1 0.0577 

 7.000 5.0000 1.2515 0.7603 5.0000 1 0 1 0 0.0837 
 4.000 3.0000 1.2114 0.7524 3.0000 1 1 1 0 0.0728 

e2=0.7 6.000 4.0000 1.3104 0.7711 4.0000 1 1 1 1 0.0985 
S3=+1 4.000 5.0000 0.8618 0.6519 5.0000 1 1 1 0 0.0679 

 6.000 5.0000 1.1292 0.7343 5.0000 1 1 1 0 0.0478 
 
where: τ = Half of the transfer time in canonical units, ν = Redefined true anomaly, η = Redefined eccentric anomaly, a 
= Semi-major axis of the transfer orbit, e = Eccentricity of the transfer orbit, S3 = 1 if M2 is at periapse at t = 0 and -1 if 
it is at apoapse, L = 1 for "short way" transfer, 0 for "long way" transfer, P = 1 if periapse is in a positive abscissa, 0 if 
in a negative abscissa, S = 1 if transfer is direct, 0 if transfer is retrograde, A = 1 if M3 pass by the periapse at t = 0, 0 if 

it pass by the apoapse, ∆V = Velocity increment in meters/second. 



 

Table 2. Transfer orbits with ∆V < 0.1 for the transfer in the geosynchronous orbit 
 

τ/π η/π a e ν/π L P S A ∆Vc ∆T ∆V 

3.500 3.0000 1.1081 0.0976 3.0000 0 1 1 0 0.095 3.49 292 
3.500 4.0000 0.9149 0.0931 4.0000 0 0 1 0 0.095 3.49 292 
4.500 4.0000 1.0816 0.0755 4.0000 0 0 1 1 0.074 4.49 228 
4.500 5.0000 0.9322 0.0727 5.0000 0 1 1 1 0.074 4.49 228 
5.500 5.0000 1.0656 0.0616 5.0000 0 1 1 0 0.061 5.49 188 
5.500 6.0000 0.9437 0.0597 6.0000 0 0 1 0 0.061 5.49 188 
6.500 6.0000 1.0548 0.0520 6.0000 0 0 1 1 0.051 6.49 157 

 
The symbols are the same ones used in the previous tables. 
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