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Abstract. This work develops a method of perturbation of a stationary solution of a nonlinear conservative system. In the reference solution the 
frequencies depend on the momenta, that is, the fundamental frequencies of the reference solution are amplitude dependent and for some values of the 
momenta are linearly dependent.  The basic assumption is that the Hamiltonian of the system can be expanded in terms of an n-dimensional convergent 
Fourier Series with the usual property that the magnitude of the coefficients decreases quadratically with the increase in frequency of the angular 
variables associated. The Hamiltonian is reduced to a simple form by means of a number of canonical transformations. The method is applied to a 
nonlinear oscillator and to the motion of a geostationary artificial satellite. 
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1. Introduction 

Behavior of Dynamical Systems where internal or external resonance is present is in general difficult to predict since it 
includes situations of isle formations in phase space or even chaotic patterns. This has been known for many years (e. g. 
Danby, 1970; 1971; Thompson and Stewart, 1989).  A special Symposium on Periodic Orbits, Stability and Resonances was 
held at the University of São Paulo in 1969 (Giacaglia, 1970a) where several discussions arose during presentations of 
papers. Not mentioning typical mathematical studies or well known phenomena in electrical systems, a new interest on 
problems involving resonance was brought about with the development of space activities, when cientists, looking back at 
classical works by Poincaré (1957), Birkhoff (1927), von Zeipel (1916-17) and many others, discovered new ways of 
approaching resonance present in Satellite Theory, as is the case of critical inclination (Hori, 1960) or geosynchronous 
orbits (Kaula, 1966). Most of these works were devoted to systems where a small divisor appeared in methods of solution 
based on the averaging over fast variables of the system. In 1968, at a meeting of the Instituto Nazionale di Alta 
Matemática, this author presented a method of dealing with a more complex situation (Giacaglia, 1970b) where a two 
degrees of freedom system, presenting two independent resonance conditions, was reduced to a system with a single degree 
of freedom. Allan (1970) at the same meeting, studied an equally complex problem involving orbital resonance among 
natural satellites. A general theory based on averaging method was developed by this author  (Giacaglia, 1970c) showing 
how multiple resonance situations could be represented by asymptotic series, in the sense of Poincaré (op. cit., Vol. I). 
Several aspects of resonance problems were discussed by this author (Giacaglia,1972) and received substantial addition in a 
later translation (Giacaglia and Markeeeva, 1979).  At a meeting at The University of Texas, this author (Giacaglia, 1979) 
developed a novel method of asymptotic series development in the presence of two small divisors in satellite motion. Later 
works introduced no novel approaches to the general problem of resonance, except for the established agreement that in 
many instances problems involving resonance could lead to a chaotic behavior, as shown by numerical integration of 
systems even with a small number of degrees of freedom. On the other hand, asymptotic series representing resonance 
situations in the motion of both natural and artificial celestial bodies have shown an excellent agreement with observations, 
for very long periods of time. Of course one has to consider, in this respect, some positive results by Kolmogorov (1952), 
Arnol´d (1963) and Moser (1962), dealing with the conservation of integral manifolds under the presence of perturbations. 
The role of dominant terms in the Fourier Series representing a properly reduced dynamical system was first shown by 
Garfinkle (1970). More recent works compare theoretical results with numerical evaluations, showing the existence of 
chaotic behavior of certain dynamical systems (Nesvorný and Morbidelli, 1998; Gozdziewski and Maciejewski, 1998). 
Analytical methods of perturbations of integrable canonical systems have been applied to problems of Celestial Mechanics, 
where numerical computations showed good agreement, have been applied by Grau and Gonzales (1999), Grau and 
Noguera (1999) and Gomes (1998) among several others. Nan and Luo (1998) applied analytical methods of perturbation to 
a special time dependent Duffing Oscillator exibiting resonance and chaos. Worth  to be commented is a work by Butcher 
and Sinha (1998) where they applied canonical transformation theory dating back to Von Zeipel (op. cit) to a Mathieu-Hill 
equation, redescovering and renaming well established expansion techniques in Celestial Mechanics. As a colleague of mine 
well remembered, after Poincaré very few original theories have been developed. Amazingly enough, works by Brouwer 
(op. cit.), Hori (op. cit.) and many other scientists who worked in Satellites Theories are being forgotten at a very fast pace. 
In a recent work, this author (Giacaglia, 1999) has shown how to construct periodic orbits in the vicinity of a stationary 
point of a conservative system by applying a convergent method of successive approximations. It is shown in this work that 
stationary solutions and resonance situations are equivalent problems in well defined phase-spaces.   
 
2. Definition of the Problem 

The Hamiltonian Function H (q, p) is considered to be real analytic in an open set of R2n and 2π-periodic in all angular 
variables q. Limiting the norm | ν | of each set of integers ν by an upper bound, the Fourier series   
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when there exists a point P0 such that the reference frequencies are linearly dependent, that is, there is one set of n integers jk 
such that jTω(p0) = 0. Assuming all momenta p to be present in A0 a new set of canonical variables is introduced by the 
following transformation: 
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The new reference frequencies are given by  Ω (x) = A0x  and one easily verifies that 
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It follows that at p = p0, all new frequencies Ωk are different from zero and linearly independent, except for Ωn which is 

zero. The problem is therefore equivalent to one where 
n0x0A = 0 for some value of x = x0 and 

i0x0A ≠ 0 for I = 1, 2, 3, 

…, n –1. In order to identify the real meaning of this, consider a trigonometric argument  θ = ν1q1 + ν2q2 + ⋅⋅⋅ + νnqn. By 
changing to the new variables, one finds that 
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Suppose now that the argument θ is such that j // ν, where jTω0 = 0. This is called a critical argument. It follows that this 

argument is reduced to the simple form θ = (νn / j  n) y n.  The critical argument at P0 is reduced to a rational multiple of yn 
alone.  Since for x = x0 , Ω0(x0) = 0, it follows that the angle yn is stationary. One can state that a single resonance among 
the reference frequencies of a system leads to a stationary motion in a conveniently defined space of new variables. Vice-
versa, if for some value of x = x0, one of the reference frequencies of the system is zero, this corresponds to resonance 
(linear dependence) among the frequencies of the system in a conveniently defined space of new variables.  
 
2.1. Development of the Solution 
 

In order to study the motion of the system when p is close to p0, that is when x is close to x0, consider the transformed 
Hamiltonian 
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The problem is to eliminate as many angular variables as possible from the Hamiltonian by a suitable canonical 

transformation to new variables (ξ, η) generated by the Jacobi function  
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such that  x = ξ + Wy, and η = x + Wξ where W(ξ, y) is a Fourier series similar to H(p,q) and the maximum value of |W| is 
of some order εr (r>0). It will be shown that the order of magnitude r depends on s and on the order of magnitude of  H1 
containing isolately the critical argument yn.  

The new Hamiltonian K(ξ, η) in the new variables (ξ, η), takes the usual (Brouwer and Clemence, 1961) expanded 
form K(ξ, η) = K0(ξ ) + F(ξ, η), a Fourier series similar to H(p, q). Expanding in Taylor series both sides Eq. 6 below 
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it is found that 
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Matching terms of same order of magnitude in ε one finds  )
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it follows that 
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and 1n21 �,,�,� −�  are not all zero. Therefore, it is found that 
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The process can be repeated up to any order of approximation. If there is a term containing  yn alone, another process 

must be used for in this case the denominators (A0ξν) will be of order εs when 0���
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and 1n21 ',...,',' −  are not all zero in any term. Initially, all angular variables, except yn, are eliminated by defining  
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so that the resulting Hamiltonian becomes 
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The resulting system has a single degree of freedom and can be reduced to a quadrature.  This integration can generrally 

be performed by an asymptotic series as follows.  
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such that the transformed Hamiltonian is  a function only of the new momentum x´.  
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If  W is O(εr), the following equations hold true 
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If Wy has to be not identically zero and furthermore always determined even if x0K ′ = 0, then 
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narrower region of resonance since for p > 1 / 2, it follows that 2/12/p �� <  . For any order of approximation the recurrence 
equation assumes the form 
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where it should be mentioned that Fk is made up of Kk(x´,y) plus terms O(εk) arising from lower order terms and therefore 
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2.2. Reduction to the Ideal Resonance Problem.  
 

In the previous sections it was shown how to reduce the Hamiltonian of the system to a form that may be written as 
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and the momenta 1n21 �,...,�,� −  are certainly constants because the corresponding angular variables are ignorable.  

Therefore, hiding all constant parameters the reduced Hamiltonian is written as 
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where the transformed Fourier series has the same properties of the original one, that is, the coefficients )
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It can be shown (Giacaglia, 1970d) that the Hamiltonian can be reduced to the ideal resonance problem by means of a 
canonical transformation  generated by a function  S(ξ, y) = ξy + S1/2 + S1 + S3/2 + ⋅⋅⋅. The Hamiltonian assumes the new 
simple form  
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This has been defined as the Ideal Resonance Problem by Garfinkel (1970) and has well known properties.  
The consideration of special conditions define whether one has libration or circulation around a center in the phase 

plane (ξ, η) or an asymptotic trajectory toward a saddle point (Giacaglia, 1970d).  
 
2.3. Application to a nonlinear oscillator 
 

Let us consider the problem defined by the Hamiltonian 
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Suppose the following values for the reference orbit defined by the very first term of H:  
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Corresponding to these values, resonance occurs corresponding to the critical argument 2q1-q2 and all of its multiples. 
According  to Eqs. (2), (3) and (4) the Hamiltonian takes the form 
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It is seen that the critical argument has been reduced to a single variable 2y . According to Section 2.1, assuming the 
definitions 
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Straightforward developments lead to the results 
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In all previous equations it has been assumed that 
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According to the procedure pointed out in Section 2.2, reduction to the ideal resonance problem via a Jacobi generating 

function is possible, together with the definition of the singular points in the transformed phase plane (x,y) of (ξ2, η2). 
If one defines the reduction as  
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the first approximation to the generating function  S(ξ, y) = ξy + S1/2+ ⋅⋅⋅of the necessary transformation is given by Eq.32  
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where ξ stands for ξ2 and y is the new angular variable. 
 

Introducing the values for A0 it is found that 
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At  y = 0  the right hand side of Eq. 33 takes the value 
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If ∆ > 0, S1/2,y is always real and therefore y undergoes circulation. If ∆ < 0, S1/2,y becomes complex at some value 
away from y = 0 and this value will never be reached. In this case one has libration around the point of minimum y = π. 

At  y = π  the right hand side of Eq. 33 takes the value 
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Suppose now that the additional condition expressed by Eq. 38 is satisfied 
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the result at y = π would be  
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A possible situation would be for S1/2 to be a sine series in y, but this might not be the case. In any event, at y = π, S1/2 
is an arbitrary function of ξ. On the other hand, the differential equation for y is given by 
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2.4. Geostationary Artificial Satellite 
 

A classical problem of resonance corresponds to the equations of motion of an artificial satellite at an altitude of 
approximately seven earth radii leading to an orbital period of 24 hours. Any axial asymmetry of the earth potential field 
will generate a situation of resonance between these anomalies and the motion in longitude of the satellite. In this case, the 
relevant part of the Hamiltonian of the system, using appropriate variables, may be written as 
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The relative orders of magnitude of these two terms, computed by the values of the physical constants representing the 
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artificial satellite, at zero inclination and in a circular orbit. The dominant part of H0 corresponds to the Newtonian central 
field and here the term corresponding to the earth dynamical polar flattening has been included, so that the mean motion n is 
affected by an order of magnitude ε. The second term includes all other gravitational forces on the satellite resulting from 
the equatorial anomalies. An analytical solution of the original problem may be obtained by a succession of canonical 
transformations reducing the problem to one where only momenta are present in the mapped Hamiltonian (Brouwer, 1961). 
Each of these transformations are generated by functions assumed to have the same sequence of order of magnitude as the 
original Hamiltonian. In cases of resonance this is no longer true and one is forced to consider generating functions with a 
slower rate of approximation. This is the case of a satellite moving in an equatorial circular orbit. Here the critical argument 
is represented by the equatorial longitude of the satellite measured from an earth fixed reference frame. The dominant term 

in H1 is given approximately by )]
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hour angle at time t and all other parameters have been computed and incorporated to the numerical factor except for the 
ratio of the gravitational constant µ and the orbital mean radius a. Other terms with the same argument are to be included if 
one wishes to have a more precise result for the satellite position. This can actually be done by including a number of these 
terms and reducing the problem to the ideal resonance form.  

The explicit form of the Hamiltonian, after all other angular variables have been eliminated, is (Kaula, 1966) given by 
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e20 		 = , the axial rotation of the Earth. For a near 24h satellite, one has a small value of the difference between these 

two frequencies and it is assumed a certain small parameter ε such that the difference between these frequencies is O(ε1/2). 
This order is assumed in order to match with the order of magnitude of H1 which is 10-6, and considered O(ε).  To this 
effect, one may think of ε as being of the order of 10-6, so that the difference in those frequencies is at most 10-3n. 

By transforming the canonical variables to the new set defined by 
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The frequencies corresponding to the new variables are given by  
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It is seen that the frequency corresponding to the new variable x2 is small. At exact resonance, it becomes zero, and the 

reference solution is stationary in the angular variable y2. The problem is reduced to the normal form, represented by the 
Hamiltonian 
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where the only variables left are x = x2 and y = y2, while x1 is constant and y1 is easily obtained after the solution for x2 and 
y2 has been found. The order of magnitudes are ε for A0, ε

1/2 for A0x, and at least ε for all coefficients of the cosine and sine 
series. In the geostationary problem, one may define A0(x) = µ2/2(x1 + x2)

2 + ωe x2 + O(ε) and the first few dominant terms 
are A2 = 3 C22 r

2 p1
6 , A3 = (C33 + C31) (3/8) r3 p1

8,  A4 = (C42 + C44) 15 r4 p1
10, and similar expressions for the B 

coefficients, where r is the ratio between the mean equatorial radius of the Earth and the gravitational constant µ for the 
Earth and Clm and Blm are the tesseral harmonic coefficients of the Earth potential field, measuring the dynamical equatorial 
distortion..  

By means of a canonical transformation to new variables u,v defined by a generating function  
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the above Hamiltonian is mapped into the new form 
 

v2sin)u(Rv2cos)u(Q)u(P)v,u(K)]v,u(y),v,u(x[H ++==                           (48) 
 

where the coefficients P and Q are to be computed by successive approximations as series of increasing order in ε. It is 
found that 
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while the O(ε) and O(ε3/2) equations read 
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By defining Q1 = A2 and R1 = B2, the equation for S1/2,y is given by 
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where the + sign has been chosen, representing one branch of the solution. This may be written as 
 



xu
�

A2

A
S

uu,0

u,0
y,2/1 −=+−=                               (52) 

 
Clearly the sign of ∆ will indicate whether libration or circulation occur, at given values of  u and v(y) in the (v, u) 

phase plane. The problem corresponding to the Hamiltonian in the final form K(v, u) = P(u) + S(u) cos (2v-2α), has been 
discussed in details by Garfinkel (op. cit.). Under the above assumptions,  

 
tan2α = (B2 + B3 + …)/(A2 + A3 + …)  = (B2/A2)(1+ B3/B2 - A3/A2+ …) = (S22 / C22) (1 + O(ε1/2))                         

(53) 
 
Introducing numerical values for S22 and C22 it is found that  α = -29,85o. The Earth referred longitudes defined by α ± 

π/2 (60,15 degrees west and 119,85 degrees east of Greenwich), are the longitudes about which libration will occur. At 
exact resonance (n = ωe) these are stable equilibrium points for the geostationary satellite. A more precise calculation of 
these longitudes will show that the difference  from the above values is just a few minutes of arc. 
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