Proceedings of COBEM 2003 17th International Congress of Mechanical Engineering[’|
COBEM2003 - 0768 Copyright © 2003 by ABCM November 10-14, 2003, Sao Paulo, SP(]

PERTURBATION OF A STATIONARY SOLUTION OF A NONLINEAR
CONSERVATIVE SYSTEM UNDER RESONANCE CONDITIONS

Giorgio Eugenio Oscar e Giacaglia
Department of Mechanical Engineering, University of Taubaté, Taubaté, SP, Brazil, 12060-440
giorgio@unitau.br

Abstract. This work develops a method of perturbation of a stationary solution of a nonlinear conservative system. In the reference solution the
frequencies depend on the momenta, that is, the fundamental frequencies of the reference solution are amplitude dependent and for some values of the
momenta are linearly dependent. The basic assumption is that the Hamiltonian of the system can be expanded in terms of an n-dimensional convergent
Fourier Series with the usual property that the magnitude of the coefficients decreases quadratically with the increase in frequency of the angular
variables associated. The Hamiltonian is reduced to a simple form by means of a number of canonical transformations. The method is applied to a
nonlinear oscillator and to the motion of a geostationary artificial satellite.
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1. Introduction

Behavior of Dynamical Systems where internal or external resonance is present is in general difficult to predict since it
includes situations of isle formations in phase space or even chaotic patterns. This has been known for many years (e. g.
Danby, 1970; 1971; Thompson and Stewart, 1989). A special Symposium on Periodic Orbits, Stability and Resonances was
held at the University of S8o Paulo in 1969 (Giacaglia, 1970a) where severa discussions arose during presentations of
papers. Not mentioning typical mathematical studies or well known phenomena in eectrical systems, a new interest on
problems involving resonance was brought about with the development of space activities, when cientists, looking back at
classica works by Poincaré (1957), Birkhoff (1927), von Zeipel (1916-17) and many others, discovered new ways of
approaching resonance present in Satellite Theory, as is the case of critical inclination (Hori, 1960) or geosynchronous
orbits (Kaula, 1966). Most of these works were devoted to systems where a small divisor appeared in methods of solution
based on the averaging over fast variables of the system. In 1968, a a meeting of the Instituto Nazionde di Alta
Matemética, this author presented a method of dealing with a more complex situation (Giacaglia, 1970b) where a two
degrees of freedom system, presenting two independent resonance conditions, was reduced to a system with a single degree
of freedom. Allan (1970) at the same meeting, studied an equally complex problem involving orbital resonance among
natural satellites. A general theory based on averaging method was developed by this author (Giacaglia, 1970c) showing
how multiple resonance situations could be represented by asymptotic series, in the sense of Poincaré (op. cit., Val. I).
Severa aspects of resonance problems were discussed by this author (Giacaglia,1972) and received substantial additionin a
later trandation (Giacaglia and Markeeeva, 1979). At a meeting at The University of Texas, this author (Giacaglia, 1979)
developed a novel method of asymptotic series development in the presence of two small divisors in satellite motion. Later
works introduced no novel approaches to the general problem of resonance, except for the established agreement that in
many instances problems involving resonance could lead to a chaotic behavior, as shown by numerical integration of
systems even with a small number of degrees of freedom. On the other hand, asymptotic series representing resonance
situations in the motion of both natural and artificia celestia bodies have shown an excellent agreement with observations,
for very long periods of time. Of course one has to consider, in this respect, some positive results by Kolmogorov (1952),
Arnol”d (1963) and Moser (1962), dealing with the conservation of integral manifolds under the presence of perturbations.
The role of dominant terms in the Fourier Series representing a properly reduced dynamical system was first shown by
Garfinkle (1970). More recent works compare theoretical results with numerical evaluations, showing the existence of
chaotic behavior of certain dynamical systems (Nesvorny and Morbidelli, 1998; Gozdziewski and Macigewski, 1998).
Anaytical methods of perturbations of integrable canonical systems have been applied to problems of Celestia Mechanics,
where numerical computations showed good agreement, have been applied by Grau and Gonzaes (1999), Grau and
Noguera (1999) and Gomes (1998) among severd others. Nan and Luo (1998) applied analytical methods of perturbation to
a specia time dependent Duffing Oscillator exibiting resonance and chaos. Worth to be commented is a work by Butcher
and Sinha (1998) where they applied canonical transformation theory dating back to Von Zeipel (op. cit) to a Mathieu-Hill
equation, redescovering and renaming well established expansion techniquesin Celestial Mechanics. As a colleague of mine
well remembered, after Poincaré very few original theories have been developed. Amazingly enough, works by Brouwer
(op. cit.), Hori (op. cit.) and many other scientists who worked in Satellites Theories are being forgotten at a very fast pace.
In a recent work, this author (Giacaglia, 1999) has shown how to construct periodic orbits in the vicinity of a stationary
point of a conservative system by applying a convergent method of successive approximations. It is shown in this work that
stationary solutions and resonance situations are equivalent problems in well defined phase-spaces.

2. Definition of the Problem

The Hamiltonian Function H (g, p) is considered to be real analytic in an open set of Rop, and 2reperiodic in all angular
variables g. Limiting the norm | v | of each set of integersv by an upper bound, the Fourier series
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H(p.@) = Aop) + Hi(p) =Ad(p) + Y~ [A} () costv ' @) + B (p) sin(v ' o) ®
[v|z0

will be composed of afinite number of terms of the form AI’ (p) cos(qu) + BI’(p)sin(qu) for |v | <K, 0 <K, finite.
The reference frequencies corresponding to Aq(p) are defined by the o, (p) =A op, (p). Resonance here is defined

when there exists a point P, such that the reference frequencies are linearly dependent, that is, there is one set of nintegersjy

such that jTeX(po) = 0. Assuming all momenta p to be present in A a new set of canonical variables is introduced by the
following transformation:

Yi =0 (i =12,...,n-1), Yn :jlql +j2q2 +"'+jnqn

. . . : T @)
P =X +jX, (=12..n-1), p,=jX, (j,%0), j'0y=0
The new reference frequencies are given by Q (X) = Aox and one easily verifies that
Q)=o) (k=12..,n-1), Q,(x) =] o(p) 3

It follows that at p = pg, all new frequencies Q, are different from zero and linearly independent, except for Q,, which is
zero. The problem is therefore equivalent to one where AOXOn = 0 for some value of x = X and AOXOi #z0forl =1,2 3,

..., N =1. In order to identify the real meaning of this, consider a trigonometric argument 0 = viq; + Vo0, + [IHF v,q,. By
changing to the new variables, one finds that

0 :(Vl - jlvn /Jn)yl e +(Vn—1 _jn—lvn /Jn)yn 1 +(Vn /Jn)yn (4)

Suppose now that the argument 6 issuch that j // v, wherej ay, = 0. Thisis called acritical argument. It follows that this
argument is reduced to the ssimpleform 6 = (v, /j ) Y. The critica argument at Py is reduced to arational multiple of y,
alone. Since for x = xq, Qo(Xg) = 0, it follows that the angle v, is stationary. One can state that a single resonance among

the reference frequencies of a system leads to a stationary motion in a conveniently defined space of new variables. Vice-
versa, if for some value of x = xg, one of the reference frequencies of the system is zero, this corresponds to resonance
(linear dependence) among the frequencies of the system in a conveniently defined space of new variables.

2.1. Development of the Solution

In order to study the motion of the system when p is close to py, that is when x is close to xo, consider the transformed
Hamiltonian

) H=Ag0)+Hq(xy)
1) Hy = SIAY (costv T y) +BY (9 sinv Ty)l, and for [ vI< K, finite, [AY (1% +]BY (1 <K ;* =0 %), c>0,
A%

0<|x|<X, K, =0 ?)
1 For x =xg, Agy, (Xp) =0g #0, 1=1,2,..,n=1 @A, (xo) =00, =0

V) The motion is to be determined for valuesof x = X0 such that

S -
AOXn(x):con(x), 0<|wp(X)|<8e”, O<dfinite, 0<e<1,s>0.

The problem is to eliminate as many angular variables as possible from the Hamiltonian by a suitable canonical
transformation to new variables (€, n) generated by the Jacobi function



SEy) =&Ty + W(E,y) )

suchthat x =& + Wy, andn = x + W where W(§, y) is aFourier series similar to H(p,q) and the maximum value of |W|is
of some order €' (r>0). It will be shown that the order of magnitude r depends on s and on the order of magnitude of H,
containing isolately the critical argument y;,.

The new Hamiltonian K(&, n) inthe new variables (&, n), takes the usual (Brouwer and Clemence, 1961) expanded
formK(&, n) = Ko(& ) + F(&, n), aFourier seriessimilar to H(p, q). Expanding in Taylor series both sides Eq. 6 below

H(y,E+W, ) =K(y + W,, ) (6)
it isfound that

A, (6) +AO§Wy +%Aoaawy2 +"'+H1(y’&)+Hl§Wy +%H155Wy2 tee

(7
=Ko (&) +F(y,8) +F, W, +1F, W2 +--

Matching terms of same order of magnitudein € onefinds K, (&) = A (&) . Next consider the following cases

) H, (y,&) doesnot contain the critical argument y, isolately. In this case, the equation

ZAoai Wy, ¥ H, (y,€) =Ky, <) 8)

isof first order if Wisof firstorder andsoisasoF, thatis, W=S, +S, +---and F=K, +K, +---. Theterm

A 0t Wyn isorder r+s, that is, order 1+s in € and isincluded since it does not introduce small divisors. In fact, defining

1 2n 2n
K =—— — |--- |H,(y,&)dy,---dy__ 9)
ﬁ)Qﬂﬂjjlwam Yot
it follows that
n ~

D Ac Sy +Hi(y,8) =0 (10)

=1 | |
where

Hl = Z[AI ((t:) COS(Vlyl + '“Vnyn) + BI ((t:)Sin(Vlyl +--- Vnyn)] (11)
and v, V,,..., Vv, aenoctal zero. Therefore, it is found that

S, =D~ [AL(E)/ AgevISiN(vyy, +--v, Y, ) + D [BY(€)/ Agevcos (v,y; +--v,Y,) (12)

v v

The process can be repeated up to any order of approximation. If there is a term containing y, aone, another process

must be used for in this case the denominators (Agev) will be of order e*when v, =v, =---=v _, =0.

1 H, (y,&) does contain terms wherey,, appearsisolately. In this case one may write thisterm as

H,(y.€) = Y [A] (§)cos(vTy) + B} (€) sin(vTy)] + D [A] (§) cosay,, +Bf (E)sinay,],a=21 (13

and V,,V,,..., vV, arenotal zeroin any term. Initialy, all angular variables, except y,, are eliminated by defining



K@ Ya) = I IH (v, &)y, -~y oy (14)

(2n )
so that the resulting Hami Iton|an becom&s
K(éuﬂn):Ko(é)+K1(§,ﬂn)+Kz(§,nn)+‘“ (15)

The resulting system has a single degree of freedom and can be reduced to a quadrature. This integration can generrally
be performed by an asymptotic series as follows.

Consider the Hamiltonian K(X,y) =K (X) + K (X,y) + K,(X,y) +--- where x and y are scalar variables of a
system with a single degree of freedom, X =&,y =1, , al other momenta &, ,k =1, 2,..., N =1, being constant
parameters corresponding to the ignorable angular variables 7, k=12, ..,n-1. It has been observed that
K o« =0(5€®) . One looks for a canonical transformation to new variables (X', y") generated by the function

S(x',y) =xy +W(x',y) (16)

such that the transformed Hamiltonian is afunction only of the new momentum x”.
Expanding the energy equation K[X(x',y"),y(X',¥")] = K'(X") and assuming, as usua, that K{(X") = K, (X'),
by writing K’ = K§ + F'(x') , it isfound that

KOx’Wy + 1KOxxW2 '+K1(X’ay)+K1x’Wy +"‘+K2(X',Y)+"‘:F'(X') (17)
If W isO(g"), the following equations hold true

Koo W, =0(E™), Ko W2=0(e"), K, =0("),

ox'x’

(18)
KW, =0(E™), K,=0(e?), F(x')=orderto bespecified

If W, has to be not identicaly zero and furthermore aways determined even if K .= 0, then
r+s=1, 2r=1 F(x)=0(g),sotha r=1/2,s=>1-r. If s< 1/2 the situation is not critical and for the values of

X" giving K o,. = O(¢) the problem may be treated as of non resonance. It should be noted that it has been assumed K
not to be small, that is, it should be O(¢®). On the other hand, if Ko(X, y) isthelowest part of K which containsy, that is,

ox'x’

K(X,Y) =Ko(x) + K (X) +--+ K (X) + K (X, y) +- (19)

then the relations above become r+s=p, 2r=p, F(X')=0(e"), sotha r=p/2, s=p/2 and one hasa

narrower region of resonance since for p > 1/ 2, it follows that gPl? <g¥?

equation assumes the form

. For any order of approximation the recurrence

AW +BW,, +F (x',y) =K} (X)) (20)

where W =W, +W __, +W, _ +--
The usua (Hori, 1960 ) approach to the solution of this equation is to define

Ki () =minF (x',y) = R [X',yo (x)] (21)



where it should be mentioned that F, is made up of K (x",y) plus terms O(e*) arising from lower order terms and therefore
depends on the definition of K’y and W, for p=s, st§2, 2s, ..., k-s/2. Therefore, the function

0, (X', y) =F.(X',y) =K (X") is positive everywhere but a y = y, where it is zero. All of the above assumes that
F (X',y) hasaminimumaty =y, . The stationary solution in the (x,y) plane is (xo,yo) where K, (X,) = Q(X,) = 0.

2.2. Reduction to the | deal Resonance Problem.

In the previous sections it was shown how to reduce the Hamiltonian of the system to a form that may be written as

K(1:82080iMn) = AG(6,,8504Ep) +ZAV(§1|§2’-"’§n)COSVT|n +B,(81,&,,-8,) sinvn, (22)

v£0
and the momenta ﬁl R g yeeey & n-1 arecertainly constants because the corresponding angular variables are ignorable.
Therefore, hiding all constant parameters the reduced Hamiltonian is written as

K(Em) =A,(€)+ Y A, (&) coskn + B, (&) sin kn 23

k#0
where the transformed Fourier series has the same properties of the original one, that is, the coefficients A, (&)

and B, (&) are at most O(¢).
It can be shown (Giacaglia, 1970d) that the Hamiltonian can be reduced to the ideal resonance problem by means of a

canonical transformation generated by a function S(€, y) = &y + Syo + S + Sgjp + [ The Hamiltonian assumes the new
simple form

H(x,y) = K[E(X, ¥), (X, y)] = P(x) + Q(x) cosy + R(x) sin'y (24)

This has been defined as the |deal Resonance Problem by Garfinkel (1970) and has well known properties.

The consideration of special conditions define whether one has libration or circulation around a center in the phase
plane (&, n) or an asymptotic trgjectory toward a saddle point (Giacaglia, 1970d).

2.3. Application to a nonlinear oscillator

Let us consider the problem defined by the Hamiltonian

H(p,q) =1 (p? +p;) + At*(p)cos(a, +q,) + AF™(p)cos(2q, —q,) +

- (25)
+AZ*(p)cos(2q, +2q,) + A3 (p) cos(4q, —24,)
Suppose the following values for the reference orbit defined by the very first term of H:
Pio =1= 045, Py 2=y (26)

Corresponding to these values, resonance occurs corresponding to the critical argument 20;-0 and all of its multiples.
According to Egs. (2), (3) and (4) the Hamiltonian takes the form
— 2 2 11 2,-1
H(X,y) = 3 (X, +2%,)" +3%; + A (X) cos(3y, —y,) + Ay (x)cosy, +

(27)
+A2?%(x)cos(6y, —2y,) + Ay ?(x)cos2y,

It is seen that the critical argument has been reduced to asingle variable Y, . According to Section 2.1, assuming the
definitions



A, =3(x, +2x,)* +1x5, H, = A (X)cos(3y, —y,) + AZ7(x)cosy,

(28)
H, = AZ2(x) cos(By, — 2y,) + A3 (x)cos2y,
Straightforward developments lead to the results
Ko(él’ézynz):%(§1+2§2)2+%§§+%§2(§2_ctal) 29)
Ki(1,€5.m,) :1_3(3%1(&:2 cosn,, K,(&,€,.m,) :ﬁéf cos2n,
In all previous equationsit has been assumed that
AT =30, (P +P,) AT = =50, (P +2D,), AST = 5605, AL = 55 (Py +20,)° (30)

According to the procedure pointed out in Section 2.2, reduction to the idea resonance problem via a Jacobi generating

function is possible, together with the definition of the singular points in the transformed phase plane (x,y) of (€2, n2).
If one defines the reduction as

KEmn) =D A;(€:.8,) cosin, =K(E(X, y).n(x,y)) = Z(x,y) = P(x) + Q(x) cosy (31)

i=0

the first approximation to the generating function S(&, y) = &y + Sq/o+ [IBf the necessary transformation is given by Eq.32

AwS,y t+ %Aoﬁésflz,y + ZAj (E)cosjy =P, (&) + Q, (&) cosy (32)

j=0
where & stands for &2 and y is the new angular variable.

Introducing the values for Ag it isfound that

Sizy = ~(Bk+ £{(BKk+E)* + Z[2A, cos’(y/2) - ) A, (€) cosjyl}* (33)
At y =0 theright hand side of Eq. 33 takes the value :

Sii2y (Y =0) =~(5 k +&) £{A}"* (34)
A=(Zk+E)*+E[2A, -ME)], ME) =D A©) (35)

21
If A >0, Syj2y isaways real and therefore y undergoes circulation. If A <0, S1/2, becomes complex at some value

away fromy = 0 and this value will never be reached. In this case one has libration around the point of minimumy = 1t
At y =Tt theright hand side of Eq. 33 takes the value

Sioy (Y =0) ==(5k +&) £{A}" (36)

A=(Bk+E*-L> (-D'A(©) (37)
=1

Suppose now that the additional condition expressed by Eq. 38 is satisfied

2 (-D'A;(€)=m(E)=0 (38)

=1
theresult at y = twould be



S,y (y=m)=0 (39)

A possible situation would be for Sp/2 to be asine seriesin y, but this might not be the case. In any event, at y = 11, Sq/2
isan arbitrary function of €. On the other hand, the differential equation for y is given by

Yy =0Z(x,y)/0x = Ay, + D> A, cOSjy (40)
=
and aty = mtheresult isthat Y(y =m) =A,, + Z (_1)jij . Under the assumption that Aj are order of magnitude
=1

less than Ay, one concludes that a good approximation to the libration point is given by Agy =0 andy = 1t

2.4. Geostationary Artificial Satellite

A classical problem of resonance corresponds to the equations of motion of an artificia satellite a an atitude of
approximately seven earth radii leading to an orbital period of 24 hours. Any axial asymmetry of the earth potential field
will generate a situation of resonance between these anomalies and the motion in longitude of the satellite. In this case, the
relevant part of the Hamiltonian of the system, using appropriate variables, may be written as

H(p,q) =Hy(p,,P,) + H,(py,0, +0,) (41)

The relative orders of magnitude of these two terms, computed by the values of the physical constants representing the
earth potential field are |H 0 (P) | =0, | Hl(p, = O(1O_6) considering values of p and g within the ranges of atypical

artificial satelite, at zero inclination and in a circular orbit. The dominant part of Hq corresponds to the Newtonian central
field and here the term corresponding to the earth dynamical polar flattening has been included, so that the mean motion nis
affected by an order of magnitude €. The second term includes all other gravitational forces on the satellite resulting from
the equatoria anomalies. An anaytica solution of the original problem may be obtained by a succession of canonica
transformations reducing the problem to one where only momenta are present in the mapped Hamiltonian (Brouwer, 1961).
Each of these transformations are generated by functions assumed to have the same sequence of order of magnitude as the
original Hamiltonian. In cases of resonance this is no longer true and one is forced to consider generating functions with a
slower rate of approximation. Thisis the case of a satellite moving in an equatoria circular orbit. Here the critica argument
is represented by the equatorial longitude of the satellite measured from an earth fixed reference frame. The dominant term
in Hy is given approximately by H) = (*£)10°[A(p,) cos2()\ — 0) + B(p,)sin2(\. — )] where 6 is the Greenwich
hour angle at time t and all other parameters have been computed and incorporated to the numerical factor except for the
ratio of the gravitational constant 1 and the orbital mean radius a. Other terms with the same argument are to be included if
one wishes to have a more precise result for the satellite position. This can actually be done by including a number of these
terms and reducing the problem to theideal resonance form.
The explicit form of the Hamiltonian, after all other angular variables have been eiminated, is (Kaula, 1966) given by

H(p,a) = (p,) +©.p, + ) [A(p,) cosk(a, +d,) + B, (p,) Sin k(g +0,)] (42)

k=2
The reference frequencies are given by ®,, =df (p,)/dp, =-n, the mean angular motion in longitude, and
®,, =0, the axia rotation of the Earth. For a near 24h satellite, one has a small value of the difference between these

two frequencies and it is assumed a certain small parameter € such that the difference between these frequenciesis O(s” 2).
This order is assumed in order to match with the order of magnitude of Hy which is 10°, and considered O(g). To this
effect, one may think of ¢ as being of the order of 10°, so that the difference in those frequenciesis at most 10°n.

By transforming the canonical variablesto the new set defined by

Yi=05, Y, =0, 10,5, P =X X5, P, =X, (43)



the Hamiltonian of the problem is mapped into

H(X,y) =f(x; +X,) +o.(X,) +Z[Ak(xl +X,)cosky, + B, (x; +X,) sinky,] (44)
k=2
The frequencies corresponding to the new variables are given by

Q,=f'(x,)=-n,Q,, =f'(x,) +o, =-n+ao, =0(*) (45)

It is seen that the frequency corresponding to the new variable X, is small. At exact resonance, it becomes zero, and the

reference solution is stationary in the angular variable y,. The problem is reduced to the normal form, represented by the
Hamiltonian

H(X,y) = A, (x) + D [A (x) cos jy + B;(x) sin jy] (46)

=2

where the only variables left are x = X, and y = y,, while X, is constant and y; is easily obtained after the solution for x, and
Yy, has been found. The order of magnitudes are € for Ao, sﬂz for Agy, and at least € for all coefficients of the cosine and sine
series. In the geostationary problem, one may define Ag(x) = u2/2(x1 + x2)2 + e X2 + O(€) and the first few dominant terms
ae A, =3 Cy 12 p16 , Az = (Ca3 + Cz1) (3/8) rs p18, As = (Cpp + Cyy) 15 rt pllo, and similar expressions for the B
coefficients, where r is the ratio between the mean equatorial radius of the Earth and the gravitational constant p for the

Earth and Cj,, and By, are the tesseral harmoni ¢ coefficients of the Earth potential field, measuring the dynamica equatoria
distortion..
By means of a canonica transformation to new variables u,v defined by a generating function

Su,y)=uy+S,,(u,y) +S(u,y) +S;,(U,y) +--
X:Sy:u-l-sllzy+Sl,y+s3/2,y+“' (47)

V:Su :y+sll2,u +Sl,y +S3/2,u e
the above Hamiltonian is mapped into the new form
H[x(u,v),y(u,v)] =K(u,v) =P(u) + Q(u) cos2v + R(u) sin2v (48)

where the coefficients P and Q are to be computed by successive approximations as series of increasing order in €. It is
found that

Py (u)=A,(u),P,,(u)=0,Q,(u)=0,Q,,,(u)y=0,R,(u)=0,R,,,(u) =0 (49)
while the O(€) and O(e¥?) equations read

AO,uSl/Z,y + (1/ 2)A0,uusf/2,y + Hl = I:)1 + Ql cos 2y + R1 sin 2y

. (50)
AouSyy tHy Sy =P, —(48in2y)S,), ,Q, +Qy, COS2y +(4C0S2Y)S,), R,
By defining Q; = A, and Ry = By, the equation for S,y is given by
. 1/2
A . Ao, 2+ 1 A2(1+0052y)+ Bz(l+sm2y)— )
S T o M 2a,, | TA,L | ZA cosiy - Y. B siny B &1

=2 =2

where the + sign has been chosen, representing one branch of the solution. This may be written as



A
0 4+ JA =u-x (52)

S1/2,y =-

O,uu

Clearly the sign of A will indicate whether libration or circulation occur, at given values of u and v(y) in the (v, u)
phase plane. The problem corresponding to the Hamiltonian in the final form K(v, u) = P(u) + S(u) cos (2v-2a), has been
discussed in details by Garfinkel (op. cit.). Under the above assumptions,

tan2a = (B2 + B3 + ..)/(A2 + A3 + ..) = (B2A2)(1+ B3IB2 - AJA2+ ...) = (Sp / Cx») (1 + OE?)
(53)

Introducing numerical values for Sy and Cy, it isfound that o = -29,85°. The Earth referred longitudes defined by o +
12 (60,15 degrees west and 119,85 degrees east of Greenwich), are the longitudes about which libration will occur. At
exact resonance (N = wy) these are stable equilibrium points for the geostationary satellite. A more precise calculation of
these longitudes will show that the difference from the above valuesisjust afew minutes of arc.
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