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Abstract. This paper address to the task of obtaining designs in which several objective functions are simultaneouosly considered. 
This is a very attractive issue in practical engineering design. However, due to the commonly conflicting nature of the objectives 
involved in such problems, trade offs or compromise solutions are obtained in the  multiobjective optimization context. Here these 
solutions will be obtained using the Pareto concept. The traditional weighted sum (WS) method and a more robust technique named 
normal boundary intersection (NBI) will be investigated in detail. Other existing techiniques are briefly mentioned. Some examples 
are provided showing the solutions when considering the two investigated strategies. 
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1. Introduction  

 
In practical engineering, several tasks must be satisfied together in order to obtain an optimal design solution. 

Traditionally, the task of find an optimum design for these kind of problems are tackled as a single objective 
optimization problem with several constraints such that the combination of objective and constraints involves all desired 
goals in the design. This approach has the drawback of limiting the choices available to the designer, making the 
optimization process a rather difficult task. Alternatively, multiobjective optimization (MO) techniques allow a designer 
to model a specific problem considering a more realistic behavior, which commonly involves the satisfaction of several 
targets simultaneously. This approach is therefore nearer to the technical reality than the conventional scalar 
optimization.  

MO techniques started to be applied in the structural framework in the middle 1970’s. Since then the use of such 
tools in engineering design grew substantially over the following decades as can be observed in some existing literature 
surveys (Stadler, 1984; Coello, 1999). Optimal solutions in multiobjective studies commonly refers to the possible form 
of modification of a design, which best satisfy the involved objectives simultaneously. In this way, trade-off or 
compromised solution should be investigated in which the response characteristics would improve when compared to 
the initial design. A widely used approach, which is adopted in the multicriteria optimization task, is based on the so-
called Pareto optimal concept. Two different methods based on such concept are here considered. They are the WS and 
the NBI methods. The NBI procedure proves to be the best of finding trade-offs among the competing objectives. 

The present work highlights the importance of multiobjective structural optimization and overviews the basic 
involved concepts and the most relevant work carried in this area. The application is address here for two truss design 
problems that are commonly used in literature. The objective functions involved can be related to stability conditions, 
stress conditions and free vibrations conditions. We also highlight the importance of investigation of alternatives 
procedures to calculate the objective functions and constraints for large truss systems such that a MO system results in a 
very computational effective tool.  
 
2. Optimization procedure 
 

In this work, optimal designs fulfilling several simultaneous tasks are obtained through the use of an automatically 
sizing optimization (SO) procedure. The integrated system incorporates several tools such as: Geometry and 
discretization definition, finite element (FE) analysis, sensitivity analysis and a module to link the whole procedure with 
MO strategies and mathematical programming algorithm. Here the FE module can perform statics, free vibration and 
linear buckling analysis. Direct and adjoint sensitivities calculations are implemented for all the analysis types 
mentioned above. The sequential quadratic programming algorithm (SQP) (Powell, 1978) is used as optimizer. The 
details of each of such aspect can be found elsewhere (Afonso, 1995; Macedo, 2002). Here we will explore the basic 
concepts used in MO and present some details related to the investigated strategies.  
 
2.1. Mathematical definition 

 
The MO problem may be written as  

 
Minimize: 

jokamoto
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In which s is the design variable vector, F(s) is the set of objective functions, which is to be minimized, or maximi- 
zed, nobj is the number of objective functions,  gi (s) is an inequality constraint, hi(s) is an equality constraint and  
slk, suk  are respectively the lower and upper bounds on a typical design variable.  
 
3. Pareto optimum concept 

 
In this section we present the main features of the Pareto optimality. The detailed discussions about this concept 

can be found elsewhere (Hwauang et all, 1980; Steuer, 1985; Eschenauer et all, 1990 and Hernández, 1994). 
A point  sp in the feasible design is Pareto optimal if for every s either  
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Or there is at least one objective function k such that  
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The above equations means that sp

 is a Pareto optimal if there exists no vector s which would decrease some object- 
tive function value without causing a simultaneous increase in at least one objective function.  In general the Pareto 
optimum does not find a unique solution, but rather a set of solutions called non-dominated solutions.  These solutions 
can be used to construct a point-wise approximation to the Pareto curve or surface.  There are several techniques to 
obtain the set of Pareto minima (Hwauang et all, 1980; Steuer, 1985; Eschenauer et all, 1990 and Hernández, 1994). In 
this subject, the challenging issues are related to obtain points in the concave regions of Pareto frontier (when this exist) 
and the ability to solve MO problems involving more than two objectives functions simultaneously. The WS method is 
the simplest and mostly used procedure. Other approaches have been presented in literature aiming to efficiently obtain 
the trade-offs solutions.  Among them can be referred: the homotopy approach (Rakoswka and Haftka, 1991), the 
physical programming (Messac and Sundararaj, 2000) and the normal boundary intersection (NBI) technique (Das and 
Dennis, 1998). Currently, in literature, the later two strategies are pointed to have more success to obtain the Pareto 
curves.  The NBI procedure and WS will be explored here. 
 
3.1. WS method 

 
This is the traditional approach considered in the  MO framework. In this procedure, the original MO problem is 

converted into a single optimization problem through considerations of a substitute objective function which takes the 
following format: 
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in which kf 0  is the k objective function evaluated in the initial design so and the elements β k are the weighting 
coefficients. They represent the relative importance of each objective and are normalized according to:  
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The Pareto optimum points are obtained solving many scalarizations of the MO problem for various β. This 

technique presents the drawback that an even spread of weights rarely produce an even spread of points on the Pareto 
curve/surface. In certain cases, the difficulty to find Pareto minima points increases and the designer cannot have an 
estimation of the shape of the trade-off curve/surface. Different order of polynomials can also be applied for the 
weighted factors as an alternative to improve the standard form of this scheme. 

 
3.2. NBI method 
 

This procedure is based on the so called Das parameterization of the Pareto curve and produce an even spread 
Pareto points distribution. This property turns out this method very adequate for obtaining the trade-off solutions among 



 
the various conflicting objectives. The NBI procedure is here briefly described. The details of such scheme can be 
found elsewhere (Das and Dennis, 1997 and Das and Dennis, 1998). 
 
3.2.1. Basic definitions 
 

The utopia point or shadow minima F* is defined as 
 
F* **
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in which each component *
if  represents an individual local minima. Let si*   be the respective minimizer of  fi (s).  

The pay off matrix is defined as 
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Finally the set of points ℜnobj that are convex combinations of Φ , i.e.  
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is referred to as the  Convex Hull of Individual Minima (CHIM). In addition, it is defined ℑ to be the set of feasible 
objective vectors. The boundary of  ℑ  is denoted ∂ℑ. 
 
3.2.2 Generation of Pareto points 
 

The efficient points in ℑ, in most of the cases the Pareto points, are found by the intersection between the boundary 
∂ℑ and the normal pointing towards emanating from and point in the CHIM. Denoting n the unit normal to the CHIM, 
the set of points defined by np t+= Φβ  lies on that normal. Then the intersection point between p and ∂ℑ closest to 
the origin is the solution of the following sub problem: 
 

tmax
t,x

                                                                                            (8)
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The sub problem above is called the NBI sub problem. The parameters β provides an alternate parameterization of the 
Pareto set, which is called Das parameterization (Das and Dennis, 1998). In this procedure an even spread of β is used. 
This leads to an evenly distribution in the points Φβ on the CHIM. The normals emanating from these evenly 
spacedpoints intersect the boundary of the set of attained vectors, containing the Pareto optimal points. This entire 
process forces the arcs joining two consecutive Pareto points to have equal projections on the CHIM, hence the points 
obtained are uniformly spread in this sense. The whole concept extends easily for more than two objectives. 
 
4. Examples 

 
4.1. Ten-bar truss 

 
To illustrate the capabilities of the procedure presented we will considered first the ten-bar structure shown in Fig. 

(1). The material properties are Elastic Modulus E = 2,0684.1011 N/m2, material density ρ = 2,714.104 N/m3. The 
geometry data is L = 9.144m and area A0 = 0,127m2. The structure is submitted to a vertical load P = 4,4482.105 N at 
nodes 4 and 6 as indicated in the figure. The cross-sectional area of each bar is considered as a design variable giving a 
total of ten variables.  The lower and the upper limit imposed are 0.00254m and 0.254m, respectively. 
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Figure 1. Ten bar truss example --- geometry and applied loads. 
 

Apart of the limits on the design variables, two different sets of constrains are here considered: 
constraint set 1: Stress on the ten bars.  The allowable stress value is σallow = 1.7237. 108 N/m2 (both tension and 
compression) to all bars except bar number nine in which σallow = 5.1711. 108 N/m2 (tension and compression).   
constraint set  2: Buckling Stress constraint in all ten bars is added to constraint set 1 described previously. 

The objectives to be considered for optimization are: minimization of the total weight of the structure, 
maximization of  the fundamental frequency and minimization of the vertical displacement at node 2 of the truss. The 
single optimization results found  are the same reported in literature (Arora,1989). For MO solutions Both NBI and WS 
Schemes are considered. For both constraints set above described, the MO solutions are conduct in the following 
sequence: 
(a) All three objectives combined together; 
(b) displacement and weight minimization;  
(c) frequency maximization and weight minimization and 
(d) frequency maximization and displacement minimization. 

 The MO problem (a) is optimized for both constraints sets 1 and 2.  For this case an uniform step size δ = 0.05 is 
considered to generate the parameters β from the NBI and the WS schemes.  As a consequence 231 NBI and WS sub 
problems are solved. The NBI solution for this case, gives 231 and 223 distinct points on the Pareto surface when using 
constraints set 1 and constraint set 2 respectively. However, the number of distinct points found using WS is much less 
when compared to the NBI points generated.  Fig. (2) plots all the Pareto points obtained using the NBI scheme under 
the different sets of constraints. 
 
 

 
 
Figure 2. Ten bar truss example NBI Pareto surface for MO problem (a): (a) constraint set 1 and (b) constraint set 2.  
 
MO problems (b) to (d) were solved for imposed constraints set 2.  The MO solutions were conducted for 21 uniformly 
distributed parameters β. Figures (3) to (5) present the Pareto curves obtained for these problems. In each of these 
problems 21 NBI sub problems are solved with success. As a consequence, 21 distinct Pareto points are obtained.  
Moreover, it is observed that in all situations, the NBI solution gives a very smooth trade-off curve between the 



 
investigated objectives.  The above-mentioned figures also show the comparative advantage obtained by the NBI 
uniformly spread points over the WS non-uniformly distributed points. 
 
 

Figure 3. Ten bar truss example---Pareto surface for MO problem (b): (a) WS method and (b) NBI method.  
 

 
 
Figure 4. Ten bar truss example---Pareto surface for MO problem (c): (a) WS method and (b) NBI method.  
 
 

 
 
Figure 5. Ten bar truss example---Pareto surface for MO problem (d): (a) WS method and (b) NBI method.  
 
 



  

 
 
4.1 Two hundred-bar truss  
 
As a more realistic problem we will consider the structure indicated in Fig. 6 (Al-Khamis, 1996). The structure is 
subjected to loads Ph = 4,4482.103 N acting in positive x direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62 and 71 
and  loads Pv = 4,4482.104 N acting in negative y direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 
24, 28, 71, 72, 73, 74 and 75. The material properties considered are: Elastic Modulus E = 2,0684.1011 N/m2, material 
density ρ=7,838. 103 N/m3.  The design variables are taken to be the cross sectional areas of the two hundred member, 
with a lower limit of 3,226.10-3 m and an upper limit of 2,258.10-2 m and the initial values of 6,452.10-3 m. A total of 29 
design variables are specified and the link relations to the 200 elements of the truss are indicated in Tab. (1). Stress 
constraints on the members are specified  resulting a total of 400 inequality constraints for this problem. The allowable 
stress value is σallow = 6,895.107 N/m2 (both tension and compression). In this particular example three objectives will 
be considered: minimize total volume, minimize compliance and maximize the fundamental frequency. The MO 
solutions are conduct in the following sequence:  
(a) All three objectives combined together;  
(b) compliance and volume minimization;  
(c)   frequency maximization and volume minimization and   
(d)   frequency maximization and compliance minimization. 
 

 
 
 

 
 
 
Figure 6. Two-hundred bar truss example --- geometry and FE discretization. 
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Table 1. Design variables link relations. 
 
dv Element number  dv Element number 
1 1,2,3,4 16 82,83,85,86,88,89,91,92,103,104,106,107,109,110, 

112,113 
2 5,8,11,14,17 17 115,116,117,118 
3 19,20,21,22,23,24 18 119,122,125,128,131 
4 18,25,56,63,94,101,132,139,170,177 19 133,134,135,136,137,138 
5 26,29,32,35,38 20 140,143,146,149,152 
6 6,7,9,10,12,13,15,16,27,28,30,31,33,34,36,37 21 120,121,123,124,126,127,129,130,141,142,144,145,

147,148,150,151 
7 39,40,41,42 22 153,154,155,156 
8 43,46,49,52,55 23 157,160,163,166,169 
9 57,58,59,60,61,62 24 171,172,173,174,175,176 
10 64,67,70,73,76 25 178,181,184,187,190 
11 44,45,47,48,50,51,53,54,65,66,68,69,71,72,74,75 26 158,159,161,162,164,165,167,168,179,180,182,183,

185,186,188,189 
12 77,78,79,80 27 191,192,193,194 
13 81,84,87,90,93 28 195,197,198,200 
14 95,96,97,98,99,100 29 196,199 
15 102,105,108,111,114 --- --- 
 

For the three objective case, (MO problem (a)),  an uniform step size δ = 0.25 is considered to generate the 
parameters β from the NBI and the WS schemes.  This consideration generates 15 sub problems to be solved. The 
results using WS and NBI methods are shown in Fig.7(a) and  Fig.7(b) respectively. As expected, an even and nice 
distribution of points is found for the NBI scheme in contradiction to the WS scheme. For the later we can observe 
clustering of points instead of uniform distribution of points. 

 
 

 
 
 
 
Figure 7.Two hundred-bar truss example---Pareto surface for MO problem (a): (a) WS method and (b) NBI method.  
 
 

MO solutions for problems (b) to (d) were conducted for 21 uniformly distributed parameter settings. Figs. (8) to 
(10) present the results obtained for the schemes here considered. As can be observed, both WS and NBI methods 
manage to obtain Pareto curves with a sufficient number of points. However, the superiority of the NBI plots is easily 
observed. For the problems considering two objective functions, the combination: frequency maximization and 
compliance minimization was the most difficult task to solve due to the nonlinearities of the functions involved. Also 
there is one nonconvex region in the Pareto frontier as indicated in fig. 10(a). It is important to emphasize here that NBI 
technique is able to calculate such points in contradiction to the WS method, which assumes a convex combination 
between functions. In the remaining two objective functions combinations, such behavior was not observed, as the 
Pareto curves do not exhibit nonconvex parts. 
 



  

 
 
Figure 8. Two hundred-bar truss example---Pareto surface for MO problem (b): (a) WS method and (b) NBI method.  
 
 

 
 
Figure 9. Two hundred-bar truss example---Pareto surface for MO problem (c): (a) WS method and (b) NBI method.  
 
 

 
 
Figure 10. Two hundred-bar truss example---Pareto surface for MO problem (d): (a) WS method and (b) NBI method.  
 
 
 
 



 
5. Conclusions 
 

Multi criteria optimization was address here aiming to obtain a tool that can be used to obtain practical engineering 
designs, in which commonly several tasks need to be tackled simultaneously. Optimal Trusses designs were obtained 
under this framework. Some issues regarding to WS and NBI methods implemented here were discussed. The NBI 
procedure always generates a uniform spread of points representative of all parts of the Pareto frontier consequently, a 
better model of the trade-off curve/surface was obtained when using such scheme for MO solutions. 
 
6. Further work 

 
Real engineering problems commonly involves not only several tasks (objective functions) but also complex 

physics interactions and/or several design variables. To apply optimization techniques for such problems could be an 
issue as the computational cost required for multiple numerical simulations could be in certain cases prohibitive. One 
alternative to overcome such difficulties can be obtained by constructing some form of reliable and computationally 
effective approximations to the response solutions (or outputs) of the original (and costly) problem.  In this context, it is 
currently under our investigation the reduced-basis output bound method (RBOBM) (Prud’homme et all, 2002). The 
purpose of such scheme is therefore to get high fidelity model information without the computational expense. The 
RBOBM is a Galerkin projection onto low order approximation spaces comprising solutions of the problem of interest 
at selected points in the parameter/design space. The numerical implementation of RBOBM consists of two stages: (1) 
the pre-processing or also called “off-line” stage in which the reduced basis and associated functions are computed at a 
prescribed set of points in parameter space; (2) the real time or “on-line” stage, in which the approximate output of 
interest (and their gradients) and corresponding rigorous error bounds are computed for any new parameter value of 
interest. The latter stage is very inexpensive, as it requires only the solution or evaluation of very small systems. Single 
and MO problems will be conducted in this framework. 
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