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Abstract: The vector autoregressive moving average with exogenous inputs (VARMAX) Model is used to identify 
Multiple Input- Multiple Output (MIMO) dynamical systems. This class of technique permits to model the presence 
of stochastic noise in data that permits better modal parameter identification. In order to estimate the parameters of 
the VARMAX model the Spliid’s fast algorithm is used. The advantage of this algorithm is its high computational 
efficiency, which permits to deal with a great quantity of data. When there is a great quantity of data and the regulariy 
conditions are satisfied the results obtained are very similar to to the results obtained by the maximum likelihood 
technique. On the other hand, to determine the modal parameters the companion matrix is built with the 
autoregressive part of the VARMAX model. The performance of this method here discussed is presented by means of 
simulations using a three degrees of freedom mass-damping-stiffness vibrating system. 
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1. Introduction 
 

Modal parameter identification can be done in the time domain or in the frequency domain. 
Frequency domain are widely used by experimentalist despite it gives satisfactory results only for cases 
where there are neither specific problems such as combination of significant noise and damping [1].  

On the other hand, time series analysis is being used in modal analysis satisfactory when there is 
significant noise (Smail et all, 1999, Prevosto and Olagnon, 1991, Amauri, 1996, Saito and Yokota, 1996, 
Bazan, 1993). In Multiple Input – Multiple Output (MIMO) systems, it is common to find that the output 

tY  is the result of a sum of controlled and stochastic inputs, (Fassois 2000, 2000, Petsounis, 2001, 
Spliid,1983). In this case a model that permits to model this stochastic term is needed. The vector 
autoregressive moving average with exogenous inputs (VARMAX) Model permits to model the stochastic 
noise presence in data due to the presence of the MA term which is the different with the VARX model. 
This model is very important in the time domain for modal analysis, it is used to identify MIMO dynamical 
systems (Fassois, 2000).  

To estimate the parameters of the VARMAX model the Spliid’s fast algorithm is introduced. This 
algorithm has two important characteristics: 1. High computational efficiency, which permits to deal with a 
great quantity of data. 2. It has an interesting property: when there is a great quantity of data and the 
regularity conditions are satisfied the results obtained by this one are very similar to the results obtained by 
the maximum likelihood technique (Spliid, 1983, Shumway and Stoffer, 2000). To determine the modal 
parameters of the mechanical system the companion matrix is built with the autoregressive part of the 
VARMAX model (Larbi And Lardies, 2000, Huang, 2001, Maiaet all 1987). The performance of this 
method here discussed is presented by means of simulations using three degrees of freedom mass-damping-
stiffness vibrating system influenced by stochastic noise. 
 
2. Multivariate autoregressive moving average with exogenous variables model (VARMAX) 
 

Fassois (2000, 2000, Petsounis, 2001) shows that the VARMAX model can represent a 
mechanical system with stochastic and controlled inputs; the VARMAX model is represented by: 
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Where   tX is )1( ×m  vector of the controlled input, with Tt ,...,1=  
              tY is  )1( ×k  response vector, with Tt ,...,1=  
              tε is )1( ×k non observable white noise vector, independent of tX , having Tt ,...,1= , with zero 

mean and a covariance matrix Σ  described as: 
{ } Σ=εε 'E , )( Tk ×ε  

It can also be said that: 
      iφ   is a )( kk × matrix 

iβ   is a )( mk ×   matrix 

iθ   is a )( kk ×    Matrix  
p     is the order of the autoregressive part. 
q     is the order of the moving average part. 
r     is the order of the variable exogenous part. 
The model order for the case of acceleration measurements is: pk = 2n for the autoregressive part, 

r = p for the exogenous variable. 
 
2.1 A Fast Algorithm for Parameter Estimation of the parameters of the VARMAX Model 
  

A fast parameter estimation algorithm developed by Spliid (1983) is presented next. 
 
Let Y be a matrix kT × of measured data: 
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A residual matrix kjTiij ,....,1,..,1},{ ==ε=Ε  and a regression matrix 

mjTiXX ij ,....,1,..,1},{ ===  are likely defined. 
Finally the lagged matrices are defined as: 
 

),,(
),.....,,(

),.....,,(
),.....,,(

1

2

2

LaXLaYLaAU
XLLXXLaX

LLLLaA
YLYLLYaYL

r

q

P

−=
=

εεε=
=

−
 

 
where TtkiYYL istt

s ,...,1,...,1},{ , === − .   
The parameters are ordered in one matrix  of dimension kkrkpkq ×++ )( : 
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The algorithm is initiated without the moving average term but with an increased number of 

autoregressive terms, qps += . It is important to mention that the algorithm does not require initial 
values. 

The following steps are thus defined in Spliid’s algorithm: 
Step 0: Build the matrix ( )LaXYLYLLYW s ,,........,, 2= . An estimated white noise signal ε , for 
iteration 0, is obtained by: 



YWWWWY TT 1)()0( −
∧

−=ε  

where ε=ε
∧

)0( . 

The first assumed values for the parameters matrix is 0,0)0( ==
∧

jδ  and the process can evolve to 
step 2, after this initial assumption. 
Step 1:  recursively compute the residuals for t = 1,2,......,T: 
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Step 2: Build )( jA
∧

, )( jU
∧

and compute the new estimates via linear regression, by solving the equation: 

YUjjUjU
TT ∧∧∧∧

=+ )1()()( δ  

Step 3:  If )()1( jj
∧∧

≠+ δδ , increment j by 1 and repeat steps 1 to 3.  Stop if  

)()1( jj
∧∧

=+ δδ  
 

Spliid (1983) shows that these estimators are asymptotically normal distributed. Another important 
property is that in most cases these estimators are very close to the ML estimator, ( Shumway 2000, Spliid 
1983).  
 
2.2 Model Order Choice 
 
In order to choice the model order the Bayesian Criterion of Schwarz (BCS),(SAS Intitute, 2000), is used: 
 

( )
T

TrSBC )log(ˆlog +∑=  

where:        r    is the number of estimated parameters. 
           T   is the number of samples. 
          Σ  is the covariance matrix. 

 
2.3 Modal Parameter Estimation 
 

The coefficients of the autoregressive part of the model contain the modal characteristics of the 
system (Fassois, 2000). To obtain its modal parameter, it is necessary to build the companion matrix M 
(Larbi And Lardies, 2000, Huang, 2001, Maiaet all 1987), 
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The eigenvalues and eigenvectors of M are related to the modal parameters [5,12,13] in the following way: 
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where: 



Mλ  represents the eigenvalues of M 

sλ  represents the eigenvalues of the mechanical system 

Mψ  represents the eigenvectors of M 

Sψ  represents the eigenvectors of the mechanical system, which is the upper half partition of Mψ . 
 
 
3. Application 
 

A simulated system of two inputs and three outputs is analyzed under the influence of stochastic noise , 
the Noise/Signal ratio (SNR) is 0.3699.The results are presented in table 1 and table 2. 

 
Table 1- Results for the Poles of the system 

Theorical Poles Estimated Poles 
-0.0196 - 6.6533i -0.0256 + 6.6517i 
-0.0496 -10.5300i -0.0597 +10.5303i 
-0.1307 -16.2737i -0.1908 +16.2836i 

 
Table 2-  Results for the Vibrating modes 
Theorical Vibrating 

Modes 
Estimated Vibrating 

Modes 
1.0000 
6.5732 + 0.0404i 
4.2208 + 0.0250i 

1.0000 
7.1617 + 0.7703i 
4.5648 + 0.5325i 

1.0000   
-0.0884 + 0.0008i 
-0.0992 + 0.0010i 

1.0000 
-0.1004 - 0.0070i 
-0.1097 + 0.0017i 

1.0000   
-15.4828 - 0.2628i 
23.8749 + 0.4254i 

1.0000 
-16.0515 - 5.8693i 
24.4180 +10.0270i 

 
It can be seen in table 1 and table 2 that this technique provides good estimation results in both 

poles and vibrating modes of the mechanical system. 
 
4. Conclusion 
 

This paper shows an implementation of the VARMAX identification model. The results obtained 
from numerical simulation show that such method are able to produce identification results with higher 
accuracy in the presence of stochastic noise. The fast algorithm gives goods results in the identification of 
the VARMAX’s parameters.  
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