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Abstract. Radiative transfer is the dominant mode of heat transfer in many engineering problems, including combustion chambers, 
greenhouses, rocket plume sensing among others. A complete genuinely multi-dimensional discretization in two-dimensional 
discrete ordinates method is formulated to solve radiative heat transfer in a rectangular enclosure composed of diffusely emitting 
and reflecting boundaries and containing homogeneous media that absorbs, emits and scatters. The major objetive of this study is to 
use an efficient method capable of eliminating the ray effect in complex 2D situations. One new genuinely multidimensional 
differencing scheme is used to solve a radiative transfer equation with S4, S6, S8, T6, T7, T8 and T9 angular quadrature scheme. 
Different cases are analized and the results are compared, when possible, with those obtained by other researchers. 
 
Keywords: Radiative transfer, Discrete ordinates method, Reflecting boundary 

 
1. Introduction 
 

Radiation heat transfer plays an important role in energy transfer in many scientific and engineering applications 
specially in applications involving high temperature processes where radiation is the dominant mechanism of energy 
transfer as in the cases of combustion, nuclear fusion and similar applications. In such applications, it is generally 
required to solve a multidimensional radiation field using computational techniques. In many combustion applications 
the radiation heat transfer is the dominant way of energy transfer and can significantly affect the gas temperature and 
walls. Due to the fact that the reaction rates and density distribution are closely related to the local gas temperature, the 
influence of radiation heat transfer on the combustion dynamics is very strong. In practice radiative heat-transfer 
calculations are complex and consequently many approximate solutions were proposed. Including among others, 
methods based upon diffusion approximation, formulations of the equations of radiation hydrodynamics, the methods of 
Pn and simplified Pn , the method of discrete ordinates, the method of discrete transfer and the method of control 
volume. 

In an optically dense medium, radiations travels only a short distance before being scattered or absorbed. For this 
situation it is possible to transform the integral equation for the radiative energy balance into a diffusion equation like 
that for heat conduction, Siegel and Howell (1992). The Rosseland diffusion equation for radiative energy transfer has 
the same form as the Fourier law of heat conduction, this allows solution of some radiation problems by heat 
conduction methods and it is using for simplified cases in same CFD codes, as Phoenics (2003) and CFX (2003) 

The Pn approximation introduced initially by Krook (1955) and Cheng (1964) is simply taking the momentum of 
the radiative transport equation to obtain a system of equations free of the angular dependence. Each Pn approximation 
results in a system of n2 equations and in the asymptotic limit, that is, for large n, the Pn approximation results in the 
solution of the transport equation, Ratzell and Howell (1983) applied and commented these models. Later Liu and 
Gelbard (1986) formulated a simplified Pn method or SPn. Balsara (2001) reported that Morel(1993), and Larsen and 
Morel (1993) formulated and applied another simplified SPn method but the SP3 approximation does not retain the same 
level of angular dependence as the higher order of Sn approximations.  

The method of discrete ordinates DOM proved to be a very attractive simplied method to handle and solve radiative 
transfer, and in Fiveland (1984, 1988), Truelove (1988), Balsara (2001) and Thurgood (1992, 1995) one can to find 
angular quadratures for the method. This method was originally formulated by Chandrasekhar, in Siegel and Howell 
(1992) and developed by Lathorp and Carlson (1966). Fiveland (1984, 1988) formulated an accurate method of discrete 
ordinates of the first order based upon the method of control volumes for two-dimensional and three- dimensional 
enclosures and present a general outline of the method. Viskanta and Menguc (1987) present a review of works in 
ordinates discrete and using the method in combustion problems, while Ramankutty and Crosbie (1997, 1998) present a 
more recent and extensive review of studies, which use this method and formulated the so-called modified discrete 
ordinates. Techniques based upon finite element methods were explored by Fiveland and Jesse (1994, 1995). Later and 
Sakami et all (1998), Sakami and Charette (2000) applied the modified discrete ordinates using triangular grids and 
finite elements methods. The techniques of total variation  (TVD), presented by van Leer (1974) and Hearten (1983), 
were applied by Jesse and Fiveland (1997) to solve radiation problems. Based upon the techniques TVD, Fiveland and 
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Jesse (1997) formulated a second order interpolation CLAM scheme while Howell et al (1999) used accurate 
formulation of the first order in combustion problems. Balsara (2001) formulated a new second order scheme with 
multidimensional interpolation and to solve the nonlinear system of equations obtained, using multigrid techniques in 
conjuntion with a Newton-Krylov method . 

In the present study, the method of discrete ordinates based upon the method of control volume, the CLAM scheme 
and the multidimensional interpolation GM scheme are used to handle the problem of radiation within two-dimensional 
enclosure with diffusely emitting and reflecting walls. The predictions were validated with other results obtained by 
different approaches by other authors. The main objective is to use an efficient method capable of eliminating the ray 
effect in complex 2D situations and to use the developed code for other problems including combined conduction and 
convection and CFD codes. 
 
2. Formulation 
 

The radiative transport equation for an absorbing, emitting gray gas medium with isotropic scattering can be 
written as in Siegel (1992)  
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Where  is the radiation intensity in r, and in the direction Ω; , is the radiation intensity of the 

blackbody body in the position r and at the temperature of the medium; κ and σ are the medium gray absorption and 
scatter coefficients; and the integration is in incidents direction .  
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For diffusely reflecting surfaces the radiative boundary condition for equation (1) is given by  
 

∫ <Ω
ΩΩΩ

π
ρ

+ε=Ω 0'. ')',(|'.|)(),( nb drInrIrI                         (2) 

 
Where r belongs to the boundary surface Γ, and equation  (2) applies for  n.Ω>0.  is the intensity leaving 

the surface at the boundary condition position, ε is the surface emissivity, ρ is the surface reflectivity and n is the unit 
vector normal to the boundary surface. 
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In the method of discrete ordinates the equation of radiation transport is substituted by a set of M discrete equations 
for a finite number of directions Ωm , and each integral is substituted by a quadrature series, 
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Where wk are the ordinates weight. This angular approximation transforms the original equation into a set of 

coupled differential equations, where β  is the extinction coefficient. Equation (3) can be simplified, Fiveland 
(1997) as follows: 

)( σ+κ=

 

∑
=

Ω
π
σ

=
M

k
kkm rIwS

1
),(

4
               (4) 

 
Where Sm represents the scattering source term entering  
After finalizing the angular discretization, the equations in discrete ordinates can be discretized with respect to 

space. Writing the discretized equations in discrete ordinates in the three dimensional space in the m direction we have 
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Where mmm ηξµ ,,  are the directional cosines of . The two-dimensional radiative transport equation in the m 

direction for an emitting absorbing and scattering medium is 
mΩ
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The reflection boundary condition in discrete ordinates can be written as 

 



0;|'| '

0'
'

' >µµ
π
ρ

+ε= ∑
<µ

mmm
m

mbm IwII

m

  in  x ∈ Γ             (7) 

 

0;|'| '

0'
'

' >ξξ
π
ρ

+ε= ∑
<ξ

mmm
m

mbm IwII

m

  for y  ∈ Γ              (8) 

 
The equations in discrete ordinates are discretized in space using standard technique of finite volumes of equation 

(6). The discretization in finite volumes in discrete ordinates can be obtained by multiplying equation (6) by dx.dy and 
integrate over the control volume (i,j) as shown in figure (1.a) 
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Where Vi,j is the control volume i,j in m3 . 
Figure (1) shows the stencil of interpolation. Assuming that the boundary conditions are given the system of 

equations is closed defining an interpolation system, which relates the intensities at the face with the nodal values. 

                                                   (a)                                                    (b) 
Figure 1. Interpolation stencil  (a) CLAM scheme,  (b) GM scheme 
 
2.1 Interpolation schemes at the faces 
 

In this work the CLAM scheme of Fiveland (1997) permitting one directional interpolation of the second order and 
the multidimensional scheme GM of Balsara (2001) are used. In the single direction scheme as CLAM, the interpolation 
in a given face involves three nodes and can be represented by three-point stencil as shown in figure (1.a) for the face f 
[global face:  (i+1/2,j) ]. The corresponding intensity can be expressed as 
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Having the intention to apply the so-called high resolution schemes in a domain with frontiers, the general 
interpolation expression is restricted by using the Leonard normalized variable formulation (NVF), Fiveland (1997): 
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The conditions to ensure the discretization limits of the first order operators are as bellow.  
The first condition requires that the intensity in the face to be limited by the intensity in the adjacent nodes. This is 

considered as an interpolating limit and can be expressed in normalized variables as     for  .   1~~
≤≤ fC II 1~0 ≤≤ CI

A second condition states that if a nodal value is not in the monotonic range, the face value is then restricted to the 
previous nodal value    for . Cf II ~~
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The normalized format variable in the scheme of high order CLAM is 
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Frontiers near a node, require a special treatment. In the faces into a control volume with frontiers coincident with 

the previous face, the HR scheme is applied taking the value of the previous node IU , as the frontier value and adjusting 
the weight factors. In the faces coinciding with the next frontiers, an upwind scheme is used. The HR multidimensional 



non-linear scheme of Balsara (2001), allows working with grids of different aspect ratio. The scheme uses also the 

limiting flux technique and the Van Albada limiter, in the form: 22
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3.  Methods of solution 
 

The radiative transport equations in discrete ordinates spatially discretized are obtained by substituting the 
corresponding expressions in equation (9) and is denoted as 
  

mmm FIK =)(      for  m=1,.........M             (15) 
 

Where Km is a matrix NxN representing the discrete form of the continuous transport operator Lm; Im is the vector 
solution for the ordinate in the direction mth; Fm is the vector containing the volumetric emission, the scattering and 
reflection frontiers terms. For the HR schemes, Km depends on Im and the coupling between the directions is 
incorporated in Fm. The step scheme equation (15) can be solved using combined upstream–downstream approach. This 
is analogous to organizing the upstream to downstream equation to obtain a triangular matrix and solving the resulting 
system of equations. In the global solution, equation (15) is solved individually for each direction and upon including 
the reflection and scattering terms, the equations are solved again. The iterations are continued until convergence is 
achieved. The HR schemes are non–linear and must be treated differently. Here, we apply a correction procedure in 
which the operator of first order is treated implicitly while the difference between the HR operator and the first order 
operator is treated explicitly: 
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Where  represent the transport operator for the first order and HR schemes respectively and n the 

global number of iterations over the angular-spatial grade. 
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The convergence is measured by the normalized difference between the incident energy is two successive angular-
spatial sweeps, that is  
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Where Gi is the incident energy =    w/mΩΩ∫ π
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The subscripts n and i denote the iteration and the node index respectively. 
The first order step scheme is simple and involves only the preceding nodal value:      
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The corresponding formulation in normalized variable notation (NVF) for this scheme is :  , This scheme is 

inconditionally unlimited, quick but has first order precision. 
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3.1 Deferred correction 
 

In a general manner the deferred correction procedure is denoted as 
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Where: φ = variable; φf = variable value in the face f; φf(u) = upwind step scheme; φf(H) = higher order scheme HR 
The discretized equation of φ is 
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Substituting equation (20) into equation (24) 
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where BP is 
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Using equation (21) in (25) 
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Writing the equation in a two dimensional form: 
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or in terms of φP 
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Two methods are used in treating equation (30); First approach: 
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Where n indicates the number of iterations and Bp is evaluated in the n iteration by making  
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Second approach 
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Where n means n’= n+1 for points upstream of P and n’= n for points P and downstream of P. 
Hence 
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To discretize the radiative transport equation, one can rewrite equation (9) based upon the first approach, 
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Using the step scheme for the fluxes  1
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By separating the variables, one has  
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From which one can obtain 
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The values of the fluxes in the faces nm
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multidimensional scheme while the values of the fluxes 1
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In the second approach the procedure is the same and the final discretized equations are also the same except that 
the flux values in the faces 1

,
1

, )(and)(
2
1

2
1

+
−

+
−

nm
ji

nm
ji II  are interpolated using a higher order scheme with the upstream 

nodal values as the iterate actual values and the nodal values downstream are the correspondents to the previous 
iteration. We had to do several numerical experiments in symmetrical cases to be sure that the algorithm does not have 
directional march run error and also to determine the adequate value of over-relaxation.  
 
4. Results and discussion 
 

Two cases having exact solution are presented here for comparison and validation of the model. The first test case 
is pure absorption equivalent to the case of pure scattering. The medium is absorbing and emitting with three black and 
cold walls while the top wall is black and hot with diffuse emission ID = 1. Here the convergence of the numerical 
method can be evaluated from the results shown in figures (2) and (3). To study the behavior of the converged solution 
for different quadratures Sn and Tn, the results shown in figure (4), show that for higher order quadrature the solution is 
smooth and the comparison with the exact solution, Crosbie(1984), indicates a good agreement as show in figure (5). 

The second test case is a difficult one to show if the method and the adopted scheme minimize the ray effect. The 
medium is absorbing and emitting with three black and cold walls while the top wall is black and hot in one strip of the 
wall with diffuse emission ID = 1. The results shown in figure (6) indicate that when using quadratures of order less as 
S6, S8, the numerical solution is poor when using CLAM or multidimensional scheme GM and upon increasing the 



order of quadratures T7, T8, T9 the solution becomes smooth and converges to Crosbie (1884) exact solution. When 
comparing solutions of CLAM and GM scheme it is found that GM scheme solution is more accurate and smooth than 
CLAM scheme. 

When using computational grids of aspect ratio different from unity as shown in figure (7), the results indicate that 
the model using GM scheme is adequate and converge for rectangular grids. 

The algorithm is then used to calculate radiative transfer in an enclosure with reflecting walls, the results are shown 
in figure (8). The geometry is the same as the test problems while the east and west wall are reflecting. One can observe 
that as the wall emissivity decrease the ray effect also decreases.  

  
Fig. 2. Predicted heat flux at the bottom (cold) wall obtained by T9 , 20x20 grid, isotropic scattering case –Solution 
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Fig. 3. Convergence histories in different quadratures without over relaxation. 
 
 

ig. 4. Predicted heat flux at the bottom (cold) wall, SN and TN  quadratures and exact solutions Crosbie (1984), 
Ramankutte and Crosbie (1997)  comparison , 20x20 grid,  isotropic scattering case , , βx/y=1.0. 
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Fig. 5. Predicted heat fl osbie (1984), 20x20 grid, 

otropic scattering case , βx/y=1.0. 

Fig. 6. Predicted heat fl < 0.6,  20x20 grid, isotropic 
scattering, , βx/y=1.0. –  C te and Crosbie (1997) . 

Fig 7. Predicted heat flux at sotropic scattering, 
x/y=1.0. –  Comparison different grids with exact solution of Crosbie (1984) and Ramankutte and Crosbie (1997)   

 

ux at the bottom (cold) wall, comparison of T9 and exact solutions, Cr

0.2 0.4 0.6 0.8 1
distance xêxo

0.15

0.2

0.25

0.3

t
a

e
H

x
u

l
f

q
ê πI D Exact

TN9

is
 

0.12

ux at the bottom (cold) wall obtained for strip diffuse loading case, 0.4 < x 
omparison with exact solution obtained by Crosbie (1984), and Ramankut

0.2 0.4 0.6 0.8 1
x̄ xêxo

0.02

0.04

0.06

0.08

0.1

q
−

m
o

t
t

o
b

:
q
ê πI D

Exat
Tn 8
Tn 7
Tn 6
S6

 
0.12

 
 the bottom (cold) wall obtained for strip diffuse loading case, 0.4 < x < 0.6, i

0.2 0.4 0.6 0.8 1
distance xêxo

0.02

0.04

0.06

0.08

0.1

t
a

e
H

x
u

l
f

q
ê πI D Exact

20x30 grid

20x20 grid

β

 



 

 
 

ig. 8. Heat Flux at south cold wall, reflecting  west and east walls case, εw=0.8, εe=0.8, βx/y=1.0.. Comparison of 
uadratures 

 
 

ig 9. Heat Flux at west and east wall, different reflecting west and east walls case, εw=0.8, εe=0.4,  βx/y=1.0. 
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  the one multidimensional scheme in the classical discrete ordinates method was applied and it was 
und that it is suitable for accurate calculations in radiative transfer and minimizing the ray effect in complex 
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Figure (9) shows the case of reflecting walls with different emissivity but the same geometry a case 1, and h
w
order angular TN quadrature.  
 
5. Conclusions 
 

In this study
fo

metrical situations. The algorithm can be used for calculating the radiative source term in combined heat transfer 
problems using CFD codes. 
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