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Abstract. We investigated  spatial fluctuations in a cylindrical plasma arc column in the interval of electric current  I  = 100 - 200 A 
and gas flow G = 4 – 8 g/s. The distribution functions of these oscillations were obtained. On the basis of  experimental results we 
proposed a model for the description of the fluctuations. In this model the axis of the arc O' participates at the same time on two 
movements: random oscillation and axial rotation. The lateral and radial intensities and radial temperatures were calculated for 
different rotation radii and standard deviations. For this study the spectral line of Ar I 415,8 nm was chosen. Experimental and 
theoretical results are in good agreement. 
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1. Introduction 
 

As a rule, the radial temperature is determined by spectrometric methods such as the absolute line intensity and the 
relative line intensity (Bulos, et all, 1994 and Dresvin, 1977). With the absolute line intensity method, first the lateral 
intensity I(x) is determined experimentally. After that the radial intensities and temperatures are determined solving the 
integral equation of Abel, knowing the relationship between the intensity and temperature. This procedure leads to good 
results when the plasma torch is stationary.  But the experimental results show that the sources in plasma generators are 
not stationary. The electric current, tension, radiation intensity and  temperature, as well as gas flow, velocity and the 
electric arc, oscillate (Planche, et all, 1998 and Toukhvatoulline, 1975). Planche, et all, (1998) studied the fluctuations 
of velocity, arc voltage and optical signal in a DC plasma torch.  They found fluctuations of about 15% in these 
parameters. In Inductively Coupled Plasma (ICP) torch  are hydrodynamic instabilities, due to the interaction of the 
plasma with cold atoms acting as heat sinks (Proulx, et all, 1991). As these atoms present a near-turbulent movement, 
this interaction has a probability to occur in the whole plasma, rather than only in the injection region. The result of the 
study on pulsations in ICP plasma torch (Toukhvatoulline, et all, 2000) show that it is almost free of spatial pulsations, 
but the pulsations in the radiation intensity due to the high frequency electric current exist. These pulsations are almost 
harmonic, superimposed by random oscillations. The amplitude of these pulsations reaches 10%. In Toukhvatoulline, R. 
1975 it was studied the spatial and radiation intensity fluctuations of the vortex stabilized electric arc in the plasma 
generator. The study showed that for small gas flow rate these pulsations follow a Gaussian distribution, with relative 
standard deviation varying from 7 to 38 %.  

These pulsations can affect the precision of experimental results. In Mostaghimi, J. and Boulos, M.I. (1990) the 
influence of the frequency on the temperature of  ICP torch was studied. It was shown that with an increase on 
frequency, the temperature in the axis decreases. Toukhvatoulline and Feldmann, (1999,2000) studied the influence of 
the spatial and intensity pulsations on the radiation intensity and on the radial temperature profile on the supposition 
that they follow a Gaussian distribution. The results show that the pulsations of the plasma can significantly influence 
the experimental data and can explain the differences between the theoretical calculations and experimental 
measurements. 

In the present work we studied ourselves more detailed the spatial oscillations on the stabilized electric arc aiming 
to find the arc axis distribution functions in the wide interval of gas flow and electric current. Based on the experimental 
results, a mathematical model of the cylindrical plasma is proposed, and the influence of pulsations on the radial 
temperature is calculated.  
 
2. Experimental investigation  
 

The experimental outline of the plasma generator is presented in figure 1. The plasma generator consists of cathode 
(1), anode (2), coolant channels (3) and vortex chamber (4). The diameter of the arc channel is 1 cm and the distance 
between cathode and anode is 10 cm. The working gas which produces vortex stabilization of the arc (6) enters 
tangentially at the anode through small orifices (5). The deviation of the arc at the yOz plan was registered on a film 
installed in a rotating chamber (7). The spatial pulsations of DC arc in the plasma generator for the range of current I =  
100 – 200 A and gas flow G = 4 – 8 g/s were studied. The results show that distribution functions were not Gaussian. A 

mailto:deciosch@detec.unijui.tche.br
jokamoto


                           Proceedings of COBEM 2003                                                                                17th International Congress of Mechanical Engineering
                           COBEM2003 - 0666     Copyright © 2003 by ABCM                                                                       November 10-14, 2003, São Paulo, SP





  

typical behavior of the electric arc oscillations for z = 8,5 cm, I = 200 A and G = 6 g/s is presented in figure 1b. It is 
possible to observe quasi-harmonic oscillations superimposed by random oscillations. 
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Figure 1. The experimental outline of the plasma generator (a) and a typical behavior of the electric arc oscillations for 
z = 8.5 cm, I = 200 A and G = 6 g/s (b). 
 

The frequencies of the oscillations as a function of current and gas flow are presented in the table 1. The frequency 
of these pulsations varies between 9400 and 12400 Hz and depends weakly on the plasma gas flow rate and the current 
intensity. This quasi-harmonic pulsations may be associated with the rotation of the arc around its center. The 
experimental results (Joukov, et all, 1983) are in favor of this conclusion, as it was shown that the electric arc in the gas 
flow has a spiral form. This form of the arc explains that the area of the minimum pressure is distributes along the spiral 
line.  

 
Table 1. Frequencies of the oscillations as a function of current and gas flow. 

 
I, A v, Hz 

G, g/s 4 6 8 

100 10700 9450  

150 11240 10330 9630 

200 12330 11790  

 

Analysis of the experimental results has allowed us to build the arc axis distribution functions. In figure 2 the 
distribution functions for the range of current I = 100 – 200 A and gas flow G = 4 – 8 g/s are represented. It can be seen 
that as the current increases the area of oscillations also increases. This can be explained by the deviation of the electric 
arc under influence of the own magnetic field, which intensity increases with the increase in current intensity. 
Comparing the data of figures 2b and 2c it can be seen that an increase on gas flow causes an increases of the maximum 
of function ϕ (x) and a decreases on the area of the oscillations. This can be explained possibly by the growth of the 
tangential component of the gas with increase of gas flow, which better stabilizes the electric arc. Bases on these 
experimental results, a model of the non-stationary cylindrical plasma arc was proposed. Both types of pulsations 
occurring simultaneously in the plasma are considered in this model. The arc axis position describes the spatial 
pulsations around its center, which itself pulsates describing a circular motion. 
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Figure 2.  The experimental functions ϕ (x) for G = 4 g/s (a), 6 g/s(b) and 8 g/s (c), I = 100 A (■), I =150 A (O) and  

I =200 A (▲). 

 
3. Description of the Model 
 

In the present model we suppose the presence of two types of coupled pulsations, as shown in figure 3. The axis O' 
of the arc of radius R describes in the, z = constant plan, a circular motion around the axis O with radius a in the 
laboratory coordinate system.  
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Figure 3.  Scheme of the oscillations of the plasma arc; xOy is the laboratory system and x'O'y' is the arc coordinate 
system. 

 
The axis O' also describes spatial pulsations following a Gaussian distribution 
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where σ is the standard-deviation. The projection of the circular motion of O’ around O on the xOz plan oscillates 
according to  
 

tasinx ω= , (2) 
 
where a is the rotation radius,  ω is the angular frequency. The distribution function of these harmonic oscillations (2) is  
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The total distribution function, which takes into account both types of pulsations, can be expressed as: 
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Calculation of 
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changing the integration order, implies  
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and, with consideration of the well-known integral 
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This means that for introduced function (5) the condition of the normalization is satisfied. In the limit case σ →0 we 
have 
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and respectively ϕ (x) = ϕ2 (x). In the other limit case when a→0, as it can be seen from Eq. (5), ϕ (x) = ϕ1 (x). Then, 
the equation (5) generalizes the functions (1) e (3). 
With introduction of the dimensionless quantities α = x/a;  β = ξ/a; ζ =σ/a; ψ(α)=πaϕ(x) the Eq. (5) can be rewritten 
as follows:  
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It can be seen on this relationship that Ψ(α) depends only of ζ.  This relation Ψ(α) is presented in figure 4. 

The curve 4 corresponds the case ζ = 0 (random oscillations absent) and it is determined by the relationship  
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Curves 1 and 2 refer to ζ =0.2 and 0.4  respectively. The dependence ψ (0) on ζ  is shown by curve 3. It can be 
observed that on the axis the function ψ (0) increases with ζ, it reaching a maximum and later decreasing again. 
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Figure 4. The theoretical dependence of Ψ(α). 1- ζ =0.2, 2 - ζ = 0.4, 3 -  ψ (0) of ζ, 4 - ζ  = 0, 5. ψ (ζ ). 
 

Considering the relationships 
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we can find  ζ  from the illustrations 2 and 4 (curve 5). The theoretical dependence of ψ (ζ ) in  figure 4  is presented 
by the curve 5. The values a and σ are found from the relationships 
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Data for of ζ, a and σ are presented in table 2. The table shows that, with increase of current and decrease of gas flow, 
the rotation radius of the electric arc and the standard-deviation σ  increase.  
 

Table 2.  Data for ζ, a and σ as function of  G and I. 
 

G, 
g/s 

I, A ϕmax, 
1/mm 

ϕ(0), 
1/mm maxϕ   ζ  Ψ σ(0) a, mm , mm 

1 4 100 0,63 0,6 1,05 0,47 1,144 0,607 0,285 
2 4 150 0,41 0,39 1,03 0,46 1,14 0,931 0,428 
3 4 200 0,285 0,26 1,115 0,38 1,105 1,354 0,515 
4 6 100 0,62 0,59 1,034 0,47 1,14 0,615 0,289 
5 6 150 0,415 0,32 1,297 0,285 1,055 1,05 0,299 
6 6 200 0,28 0,18 1,56 0,19 1,02 1,805 0,343 
7 8 150 0,535 0,43 1,244 0,31 1,07 0,794 0,246 
8 8 200 0,31 0,235 1,292 0,29 1,055 1,43 0,425 

 



  

The comparison of experimental and theoretical results is presented in figure 5. In this illustration the continuous 
curves are theoretical (build up by equation 6). Isolated points represent experimental data. The numbers associated to 
the symbols correspond to the numbered lines on table 2. It can be inferred from this figure, that the distribution 
function Ψ(α) depends only on ζ and that equation (6) correctly describes the pulsations in the plasma generator. This 
corroborates the proposed model.  
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Figure 5. The comparison of experimental and theoretical results. 
 
3. Intensity and temperature of the oscillating plasma 
 

The lateral intensity I( ) of the observed radiation registered by the spectrometer can be related to the intensity 
q( ) in plasma system by the integral equation (Toukhvatoulline, et all, 1999) 
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In accordance to [8],  we assume that the actual lateral intensity q(x) can be described by: 
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which leads to the equation: 
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This integral was solved numerically for a set of the parameters q(0), k, a and σ. In figure 6 we show results of this 
integration taking k = 10,  R = 0.5 cm, σ = 0.1 cm, a = 0.1, 0.2 and 0.3 cm (6a) and σ = 0.2 cm, a= 0.1, 0.2 and 0.3 cm 
(6b). The curve 1 in this figure is  q(x). 
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Figure 6  (6a) Relative lateral intensities for a constant σ = 0.1 cm and different values of a; (6b) relative intensities for 
a constant σ = 0.2 and different values of a. 
 
To find the radial temperatures, the radial intensities were calculated, solving Abel’s integral equation: 
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where ε (r) is the radial intensity. For the calculations of ε (r) equation (12) was solved numerically (Proulx, et all, 
1991). The calculations of ε (r) were performed for a = 0, 0.1, 0.2, 0.3 and 0.4 cm, σ = 0, 0.1, 0.2 and 0.3 cm. The 
particular results of ε (r) for σ = 0.1 cm, a = 0.1, 0.2 and 0.3 cm are presented in 
 figure 7. 
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Figure 7.  Relative radial intensities for  a constant σ = 0.1 and different  values of a. 
 

To find the radial temperature of the plasma the following relationship is used which related the local intensity of a 
spectral line to the temperature (Proulx, et all, 1991): 
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where  is the radioactive decay probability from  m to n energy levels, Em

nA m and gm are respectively the energy and 
statistical weight of level m,  Z is the partition function, na  is the concentration of the atoms, k is Boltzmann’s constant, 
h is the Planck’s constant and  ν is the  frequency.  



  

We calculated the dependence (13) for the spectral line  Ar I 415.8 nm in the interval of temperatures 3000 - 26000 
K. (Toukhvatoulline, et all, 1999).  The graph of the relationship (13) in the interval of temperatures 8000 - 12000 K is 
presented in figure 8.  
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Figure 8. Relative intensity of the line Ar I 415.8 nm in function of the temperature 
 

The calculations of radial temperatures starting from radial intensities (figure 7) and the dependence between the 
intensity and the temperature (figure 8) were accomplished for two temperatures in the axis of the arc T = 10000 K and 
12000 K. The calculations were made for the stationary plasma (σ = 0, a = 0) and not stationary plasma (σ = 0.1, 0.2, 
0.3 cm and a = 0.1, 0.2, 0.3 and 0.4 cm). Figure 9 presents various radial temperatures for T = 12000 K on the axis, σ = 
0.1 cm, a  = 0.1(label 2), 0.2(label 3) and 0.3 cm (label 4) (9a), and a = 0.2 cm, σ = 0.1(label 2), 0.2 (label 3) and 0.3 
cm (label 4) (9b). The curve 1 in this illustration corresponds the true radial temperature (α = 0, σ = 0). It should be 
noted from this figure that the pulsations exert considerable influence on the radial temperature. This influence depends 
on the radius of rotation a and on the standard deviation σ.  
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Figure 9. (9a) Radial distribution temperature for constant σ = 0.1 cm and different values of a; (9b) Radial distribution 
temperature for constant a = 0.2 cm and different values of σ. The curve 1 corresponds the true radial temperature  
(α = 0, σ = 0). 

 
4. Analysis of results and conclusion 
 
 The comparison of experimental and theoretical results presented in figure 5 show that the theoretical 
distribution function (6) correctly describes the space fluctuations of the arc in the plasma generator. This means that 
the proposed model is satisfactory. It can be seen from figures 6 and 9, that space pulsations of the electric arc provoke 
a decreasing of the line intensity and of the temperature at the axis of the arc as well as an enlargement of the profile 
and an increasing of the lateral distribution and temperature in the periphery.  The shape of the curve is dependent of the 



 
combination of the parameters σ and a. From results of this work allow to conclude that the plasma space pulsations can 
influence considerably the precision of the radial temperature. 
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