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Abstract. This paper discusses the dynamic instability of fluid filled cylindrical shells subjected to time dependent axial edge loads.
In the present paper a simplified low dimensional model, which retains the essential non-linear terms, is used to study the non-linear
oscillations and instabilities of the shell. For this, Donnell’s shallow shell equations are used together with the Galerkin method to
derive a set of coupled non-linear ordinary differential equations of motion, which are in turn, solved by the Runge-Kutta method.
To study the non-linear behavior of the shell, several numerical strategies were used to obtain Poincaré map and bifurcation
diagrams. Special attention is given to the influence of the fluid on the escape boundaries. The numerical results obtained in this
investigation clarify the conditions where instability may occur and help to derive safe design criteria for these shells under
dynamic loads.
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1. Introduction

Thin-wdled cylindricd shdls are widdy used in many indudries. Due to increesing use of high-strength materids,
the use of sophidicated numerical techniques and optimization methods in andysis, the design of such shels is often
buckling-critic. In many circumstances these shdls are subjected not only to datic loads but dso to dynamic
disturbances and filled with internal fluid. However, thin-waled cylindricd shells when subjected to axid compressive
loads often exhibit a highly nonlinear behavior with a high imperfection sendtivity and may loose dability at loads
levelsaslow asafraction of the materid’ s strength.

Many sudies are concentrated on the andyss of shdls vibrating in vacuum and much less is focused on the
andyds of the nonlinear vibrations of cylindrica shells in contact with a dense fluid. One of the firs sudies on
vibrations of circular cylindricd shells in contact with a dense fluid consdering shell nonlinearity was published by
Ramachandran (1979). He <udied the large-amplitude vibrations of circular cylindricad shdls having circumferentidly
varying thickness and immersed in a quiescent, inviscid and incompressible fluid using the Donnell’ s shell theory.

Boyarshina (1984, 1988) dudied theoreticdly the nonlinear free and forced vibrations and ability of a circular
cylindrica tank partialy filled with a liquid and having a free surface. Here, nonlinearity is ttributed to the interaction
of free surface waves and dadtic flexura vibrations of the shell.

Gongaves and Batista (1988) consdered smply supported circular cylindrica shells filled with incompressible
fluid. For modding the shell, Sanders nonlinear theory and a novel modd expandon that includes two terms in the
radid direction (the asymmetric and the axisymmetric ones) and ten terms to describe the in-plane digolacements were
used. Numericd results were obtained concerning the effect of the liquid on the nonlinear behavior of shdls It was
found that the presence of a dense fluid leads to more dsrong softening results vis-avis those for the same shel in
vacuum.

Chiba (1993b) sudied expaimentdly the large-amplitude vibraions of two veticd cantilevered circular
cylindricd shdlls made of a polyester sheet patidly filled with different levels of water. He observed that for bulging
modes with the same axid wave number, the weekest degree of softening nonlinesrity can be dtributed to the mode
having the minimum natura frequency, as observed for the same empty shdls He dso found that shorter tanks have a
larger softening nonlinearity than tdler ones, as in vacuum. The tank with a lower liquid height has a greater softening
nonlinearity than the tank with ahigher liquid level.

Amabili et d (1998) sudied the nonlinear free and forced vibrations of a smply supported, circular cylindrical shell
in contact with an incompressble and inviscid, quiescent dense fluid. Donndl’s nonlinear shalow-shell theory is used.
The boundary conditions on radid displacement and continuity of circumferential displacement are exactly satidfied,
while axid condrant is sdaisfied “on the average’. The problem is reduced to a sysem of ordinary differentid
equations by means of the Gaerkin method, assuming an appropriate deflection shape. The mode shape is expanded by
using two asymmetric modes (driven and companion modes) plus the axisymmetric mode.

In the present study, a low dimensonal mode, which retains the essentid nonlinear terms is used to study then
nonlinear oscillations and ingtabilities of the shdl. Here the interest is focused on a pivotd interaction between non-
symmetric and axi-symmetric modes, which produce excape from the pre-buckling potentid wel. To discretize the
shel, Donndl shdlow shdl equations, modified with the transverse inetia force, are used together with Gaerkin
method to derive a set of coupled ordinary differentid equations of motion, which are, in turn, solved by the Runge-
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Kutta method. In order to study the nonlinear behavior of the shdl, saverd numericd strategies were used to obtain
time responses, Poincaré maps and bifurcation diagrams.

The fluid is modded as non-viscous and incompressible and its motion is assumed to be irrotationa. As a reault, it
can be characterized by a veocity potentid. The solution for the veocity potentid is taken as a sum of suitable
functions, the unknown parameters of which are determined by the kinetic condition dong the wetted surface of the
shell (Batistaand Goncalves, 1988).

2. Problem Formulation

2.1 Shell Equations

Consider a perfect thin-waled fluid filled circular cylindricd shell of radius R, length L, and thickness h. The shell
is assumed to be made of an dadic, homogeneous, and isotropic materid with Young's modulus E, Poisson ratio n, and
mass per unit aea M. The axid, circumferentiad and radid co-ordinates are denoted by, respectively, X, y and z and the
corresponding displacements on the shell surface arein turn denoted by U, V, and W, as shown in Figure 1.

Figure 1. Shell geometry and coordinate system.

The shdll is subjected to auniformly distributed axid load of the form:
P(t)= P, + Py cos(wt) )

where P, is the uniform gatic load gpplied dong the edges x=0, L, P; is the magnitude of the harmonic load, t is time
and wisthe forcing frequency.

The nonlinear eguaions of motion besed on the Von Karmé&tDonnedl shdlow shel theory, in terms of a stress
function f and the transversdl displacement w are given by:
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and py, is the fluid pressure, N4 is the biharmonic operator, b and b, are damping coefficients and D is the flexura
rigidity defined as.

D =Er3/12(1- n?) ©)

In the foregoing, the following non-dimensond parameters have been introduced:
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and w, isthelowest natura frequency of the empty shell.
2.2 Modal Analysis

The numericdd modd is deveoped by expanding the transversd displacement component w in series in the
cdrecumferentidl and axid variddles From previous invedigations on modd solutions for the nonHlinesr andyss of
cylindrical shells under axid loads (Hunt e d. 1986; Gongadves and Baista, 1988; Gongalves and De Prado, 2002) it is
observed that, in order to obtain a consstent modeling with a limited number of modes, the sum of shape functions for
the displacements must express the non-linear coupling between the modes and describe consistently the unstable post-
buckling response of the shell aswell the correct frequency -amplitude relation.

Thelatera deflection w can be generdly described as (Gongalves and Batista, 1988):

W= 38 & Wcos(ing)sn(jmpV)+ & & Wjcos(kng)sin(impV) ™
i=135 j=135 k=0,2,41=0,2,4

where n is the number of waves in the circumferentid direction of the basc buckling or vibraion mode m is the
number of half-wavesinthe axial direction, q = y/R and V= x/L .

These modes represent both the symmetric and asymmetric components of the shell deflection pattern. The first
double series represents the unsymmetricd modes with odd multiples of the basic wave numbers m and n. The second
double series represents, besides the asymmetric modes which contains an even multiple of the basic wave numbers m
and n and rosgtte modes, the axy-smmetric modes which play an important role in the non-lineer moda coupling and
loss of stability of the shell.

Previous studies on buckling of cylindrical shells have shown that the most important modes are the basic buckling
or vibration mode and the axi-symmetric mode with twice the number of haf waves in the axia direction as the basic
mode, that is:

W =x ¢ );; codng )sen(mp V) +xt )go cos(2mp V) ®

The rdevance of these modes from a physica point of view is explaned by Croll and Batisa (1981) and from
symmetry and catastrophe theory arguments by Hunt et a. (1986). These modes are enough to describe the initid post-
buckling behavior of the shdl as well as the topology of the pre-buckling well and the potentia barrier connected with
the unstable equilibrium positions lying on the initia post-buckling path.

Subdtituting the assumed form of the laera deflection Eg. (8) on the right-hand side of the compatibility Eq. (3)
one may solve the resulting equation for the stress function f in terms of w together with the rdevant boundary and
continuity conditions. Upon subdtituting the moda expressons for f and w into Eq. (2) and gpplying the Gaderkin
method, a set of non-linear ordinary differential equationsis obtained in terms of modal amplitudes x(t);; .

2.3 Fluid Equations

The shdl is assumed to be completey fluid-filled. The irrotationd motion of an incompressble and non-viscous
fluid can be described by a velocity potentiad f (x,r,q,t). This potential function must satisfy the Laplace equation,

which can be written in dimensionless form as.

1. 1. o~
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wheek =r/R andf =gf /RZ.
The influence of the nonlinearities is, in terms of the fluid, very smadl, then we can adopt the fluid as linear.
Therefore the hydrodynamic fluid pressure will be given by:

Pn = Xq1 My cos(nq )Sin (mp X) (10)



where my isthe additional mass depending on the fluid contained in shell, which is given by:
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wherer gisthedensty of thefluid, r sisthe shell materiad density and I,., and I, are Bessel functions.

(11)

3. Results

Consider a thin-waled cylindricd shell with h=0002 m, R=02 m, L=04 m, E=21x10° kN/m2, n=03, M=785
kg/nf, b;=2eMw, with e=0,003 and b,=hD with h=0,0001. The densities r <7850 kg/nT and r =1000 kg/nT. For this
shell geometry the lowest natura frequency occurs for (nm)=(5,1).

Now the parametric ingtability and escape of the fluidfilled cylinder under axid harmonic forcing, as described by
Eq. (2), will be consdered. In the following, the congtant part to the loading G, is assumed to lie between the upper and
lower criticd load in the Stetic case.

Figure 2 shows the numericaly obtained bifurcation boundaries for a dowly evolving sysem in (frequency of
excitation, amplitude of excitation) control space for G,=0,80 and G,=0,40. The lower sability boundary corresponds to
parameter vaues for which small perturbations from the trivial solution will result in an initia growth in the oscillation;
therefore it defines the parametric instability boundary. The second limit corresponds to escgpe from the pre-buckling
potentiadl well in a dowly evolving sysem. These curves were obtained by increesing dowly the amplitude while
holding the frequency congtant. As one can observe, the parametric stability boundary is composed of various “curves’,
exch one associated with a particular bifurcation event. The despest well is associated with the principd instability
region & we2vy, while the second well to the Ieft is the secondary instability region occurring around wewy and the
other smdler wells to the left are connected with super-harmonic resonances. The horizontal dotted line corresponds to
the datic criticd load for this shell. Comparing figures (@ and (b), one can conclude that the datic pre-loading has the
effect of lowering the dability boundaries, of enlarging the width parameters of the instability regions and of shifting
the ingtability regionsto the l€ft. In both cases the ingtability boundaries can be much lower than the static critical load.
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Figure 2. Instability boundariesin control space.

Figures 3 and 4 show typicd bifurcation diagrams connected with the principal ingability region due to the
vaidion of parameter G, for different vdues of W. The hifurcation diagrams where obtained by brute force method and

in these figuresthe amplitude ¢ is plotted as afunction of the forcing amplitude, G.
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Figure 3. Bifurcation diagrams of the Poincaré map for weter filled shell. Principa ingtability region, G,=0,40.
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Figure 4. Bifurcation diagrams of the Poincaré map for water filled shell. Principd ingtability region, G,=0,80.

The hifurcation diagrams depicted in Figures 3a and 4.a are typicad of the left branch of the principa region of
parametric ingtahility. In this case, the bifurcation point corresponds to a sub-critica bifurcation of the trivia solution.
For such sub-critica hbifurcations the sability is suddenly lost and the system jumps to another stable solution. This
leaves a regime where there is no dtractor within the pre-buckling well after the criticd point is reached and hence an
inevitable jump to escape under increasing forcing occurs. This explains why in this region the numericaly obtained
parametric instability boundary practically coincides with the escape boundary.

In Fgure 3b, the jump is indeterminate. The response may re-stabilize within the wdl or jump to a remote
attractor. The response that is attained physicaly depends on theinitia conditions.

The bifurcation diagrams shown in Fgures 3c and 3.d ae typicd of the right, ascending branch of the gability
boundary. When G is lower than the criticd vaue, the only possble steedy state solution within the pre-buckling well
is the trivid one, which is stable. Consequently, the response is trivid. When G is grester than a critical vaue, there
are two possible steady state solutions: (a) the trivial one, which is ungable, and (b) a finite amplitude period-two (2T)
solution, which is gable. In this, case, snce disurbances are adways present, the response is non-trivid. Also, these
figures show that as G increases fom zero, the response conssts of the trivid solution. As G exceeds the criticd vaue,
X1 begins to increase dowly with increesng G. The criticdl vaue is in this case is a supercritical bifurcation point. As
the amplitude of the forcing incresses, the amplitude of the response incresses until the escape boundary is reached.
Before escgpe occurs, the period-two solution may aso become ungeble, being followed by a period doubling cascade,
eventualy reaching anarrow zone of chaotic motion, asillustrated in Figure 5.

Bifurcation diagrams in Figure 4 show a comportment smilar to that described in Figure 3 but in this case for a pre-
datic load G,=0,80.

If the cylinder is subjected to a periodic axid load, it will undergo the familiar longitudind forced vibration,
exhibiting a uniform transversal motion, due to the effect of Poisson's ratio, dso know as breathing mode. However, a
ceatan criticd vaues the longitudind motion becomes ungtable and the cylinder executes transverse bending
vibrations. Figure 5 shows a representative time histories for Go=0,80. Here W=wwy, ad wy is the lowest natura

frequency of the unloaded shell. A projection of the phase space and Poincaré section and is dso shown in these figures.
Thee figures were obtained by numericdly integrating the eguation of motion through the Runge-Kutta integration
sheme. In Fgure 53 for a forcing amplitude lower than a criticd vdue G;=0,12 and W= 0,70, &fter a finite initid
disurbance, the amplitude of the response decresses rapidly converging to the trivid solution. In figure 5b if the
control parameter G; is increased beyond a critical vaue, the shel exhibits initidly an exponentid growth of the
amplitude, converging to a limit cycle within the pre-buckling wel. In this case, the trivid solution becomes ungtable
and the system converges to a periodtwo stable solution. In Figure 5.c when G, = 0,32 the shel exhibits initidly a
chaotic motion and findly jumps to a post-buckling configuration with a period two- stable solution. If, G, is increased

dill further, G, = 045, as shown in Fgure 5.d, the shel exhibits a cheotic motion, oscillating about a post-buckling
configuration.



0.00 0.004 0.10
0.00 — 0.002 0.05 =i
1 B
0.00 = X . o 0.00—f
11 0.000 = L J
4 k<]
-0.00 — -0.002 — N
E 01
0.00 T T T T T T T -0.004 — T T T T T T T T T T T T T
-0.004 -0.002 0.000 0.002 0.004 0.00 100.00 200.00 300.00 400.00 500.0C -0.10 -0.05 0.00 0.05
X011 Time *(O1
(@G, =012
0.20 0.20
0.800

& () 19/ d¢
&)y qy

[ J

0.10— 0.10—
0.400 =

X 0,000 0.00—] 0.00—

11

010 — 010 —

-0.400
1 J J [ ]

-0.800 T T T T T T T 020 LI T T T 7 T T T T 020 T T T T T T
060 040 020 0.00 0.20 0.40 0.60 040 020 0.00 0.20 0.40
000 200.00 400.00 600.00 800.0C
Time LIORTY (0 13
(b) G =016
0.80 0.80
20.000
1 [ ]
0.40 0.40
° s
« = 000 = 000
11 =
-]
040 040 —
®
080 080
-20.000 T T T T T T T T T T T T T T T T T T T T T T
0.00 40000 80000 120000 160000 200000 200 100 0.00 .00 2.00 020 010 0.00 0.10 0.20
Time (0 1 LIORTY
(© G, =030
20000 8.00 8.00
] ] .
10,000 4.00 4,00
J S S
Xy, o000 = 000 = 000
] 3 5
-10.000 — -4.00 -4.00 —
20000 — T T T T T T T T 800 T T T T T T T 6.00 T I T I T I
000 20000 400.00 600,00 50000 100000 -20.00 -10.00 0.00 10.00 20.0¢ -20.00 -10.00 0.00 10.00 20.00
Time XU (U1

(d) G, =045

Figure 5. Time response, phase plane and Poincaré section for G, = 0,80 and W = 0,70.



4, Concluding remarks.

Based on Donndl's shdlow shel equations, an accurae low-dimensonad modd is derived and gpplied to the study
of the nonlinear vibrations of an axidly loaded fluid filled circular cylindricad shell. The results show the influence of
the modd coupling on the post-buckling response and on the nonlinear dynamic behavior of fluid filled circuler
cylindricd shdlls. Also the influence of a datic compressive loading on the dynamic characteridtics is investigated with
emphasis on the parametric ingtability and escape from the pre-buckling potentid well. The most dangerous region in
parameter pace is obtained and the triggering mechanisms associated with the dtability boundaries are identified. The
results show that the shdl may exhibit severd types of bifurcations. As a result, the engineer should exercise
considerable care when designing fluid filled cylindrica shellsunder axia time- dependent loads.
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