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Abstract. Polarization curves experimentally obtained in the electro-dissolution of iron in a 1 M H2SO04
solution using a rotating disk as the working electrode present a current instability region within the range of
applied voltage in which the current is controlled by mass transport in the electrolyte. According to the literature
(Barcia et. al, 1992) the electro-dissolution process leads to the existence of an axial viscosity gradient in the
interface metal-solution, which leads to a deviation from Von Kéarmén’s classical solution for rotating disk flow.
On four previous papers by Pontes et al. (2002a, 2002b, 2002¢, 2003) they showed that the steady flow, affected
by the viscosity gradient, is less stable than the constant viscosity flow with respect to disturbances with periodic
variation along the radial direction and also, to spiral disturbances periodically varying along the radial and
azimutal directions. No attempt has been made to take into account the transport of the relevant chemical
species and to relate the viscosity gradient to the spatio-temporal distribution of those species. Therefore, an
extension of the work developed up to now points to a stability analysis of the coupled hydrodynamic and
chemical species fields, which will eventually show the existence of time dependent disturbances in the viscosity
profile, affecting the overall stability properties of the problem. The purpose of this work is to advance a first
step in this direction, not explicitly considering the transport of the chemical species, but by assuming that the
viscosity profile is affected by perturbations in the hydrodynamic field. It is shown that the neutral stability
curve obtained for a steady viscosity profile is modified by time-dependent disturbances in the viscosity profile
and that both the magnitude and the phase angle between the perturbations of the viscosity profile and the
hidrodynamic field affect the neutral curves.
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The results presented support the hypothesis that the current oscillations observed in the polarization curve
may originate from a hydrodynamic instability and point to the need of further studies, considering the stability
of the coupled hydrodynamic and chemical species fields.
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1. Introduction

Polarization curves experimentally obtained in the electro-dissolution of iron in a 1 M H2SO4 solution using a
rotating disk as the working electrode (see Fig. 1) present three different regions (Barcia et. al, 1992). The first
region is associated with low over-voltages applied to the working electrode and the current is a function of the electric
potential and dissolution process only. The electric current is controlled by the transfer of charges at the interface
rotating disk/electrolyte solution, and the mass transport does not affect the electro-dissolution process. By increasing
the applied potential, the curves show a second region where the hydrodynamic conditions, which depend on the angular
velocity imposed to the rotating disk electrode, affect the rate of the anodic dissolution of iron. The current is a function
of both the applied potential and the hydrodynamic field developed close to the rotating electrode. By further increasing
the applied over-voltage a third region appears, where the current is totally controlled by mass-transport processes.

The polarization curves present a current plateau in this third region, defining a limit value for the current which
depends on the hydrodynamic conditions set by the angular velocity of the electrode.

Two current instabilities are observed in the third region: one at the beginning of the current plateau and a second
one at the end, where the electrode surface undergoes an active to passive transition (Ferreira et. al, 1994). The first
instability is intrinsic to the system, while the current instability close to the active-passive transition is affected by the
output impedance of the control equipment. This instability can be suppressed by using a negative feedback resistance
(Epelboin, 1972), that gives rise to continuous curves. Barcia et. al. (1992) proposed that the electro-dissolution process
leads to the existence of a viscosity gradient in the diffusion boundary layer, which modifies the steady velocity field
close to the electrode and could affect the stability of the hydrodynamic field. On a previous paper, Pontes et. al (2002)
showed that the steady flow, affected by the viscosity gradient, was less stable than the classical one, with respect to
disturbances with periodic variation along the radial direction. On three subsequent papers by Pontes et al. (2002a,
2002b, 2003) they further indicated that the flow affected by the viscosity gradient was, in many cases, less stable to spiral
disturbances, periodically varying along the radial and azimutal directions, than the constant viscosity flow studied by
Malik (1986) and Lingwood (1995). No attempt has been made to consider the
transport of the relevant chemical species and to relate the viscosity gradient @ Q
to the spatio-temporal distribution of those species. Therefore, an extension
of the work developed up to now should include the stability analysis of the
coupled hydrodynamic and chemical species fields, and it is expected that this
analysis will eventually show the existence of time dependent disturbances in
the viscosity profile, affecting the overall stability properties of the problem.
The purpose of this work is to advance one step in this way, not explicitly

considering the transport of the chemical species, but by assuming that the resin
viscosity profile is affected by perturbations in the velocity field. A time-

dependent perturbation proportional to the axial component of the curl of the

velocity perturbations is added to the steady viscosity profile and the effect metal

of this perturbed profile on the overall stability of the hydrodynamic field is
investigated. Time-dependent perturbations imposed to the viscosity profile
are assumed to have a phase angle with respect to those imposed to the velocity
field. Only stationary disturbances of the velocity field, namely, disturbances
turning with the same angular velocity imposed to the disk are considered.
The paper is organized as follows: Section (2) describes the steady velocity
flow, which is the problem base state, for the case of constant viscosity fluids
and for one variable viscosity configuration. Section (3) deals with the lin-
earized equations of the perturbed flow. Section (4) describes the numerical
procedure used to evaluate the neutral curves. The Neutral curves are given
in Sec. (5) and conclusions are presented in Sec. (6).

Fig. 1: The rotating disk
electrode

2. The Base State

The steady hydrodynamic field is the well known Von Karman (1921) exact solution of the continuity and Navier-
Stokes equations for laminar rotating disk-flow, written in a rotating coordinate frame turning with the disk angular
velocity
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where —2Q x v = 2Q (voe, — vr-€p) and 7 is the viscous stress tensor for a Newtonian fluid with the viscosity u depending
on the axial coordinate z. The components of stress tensor are given by (Schlichting, 1968):
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The steady solution takes the form:

v, = rQF() (4)
v = TQG(E) (5)
7. = (o) )?H(E) (6)
p = pr(c0)QP(8) (7)

where & = 2(Q/v(00))"/? and v(co) is the bulk viscosity, far from the electrode surface. Equations (4-7) are introduced
in the dimensional continuity and Navier-Stokes equations, leading to the following system of equations for ', G, H and
P.
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Boundary conditions for F, G and H ate F=H =P =G =0when £ =0, F= H =0, G = —1 when £ — oco. In
order to integrate Eqs. (8-11) a viscosity profile must be assumed. In this work we use the following profile proposed by
Barcia et. al (1992):
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with v(0)/v(c0) = 6 and ¢ = 2 (see Eq. 12).
3. Perturbations of the Base State

We turn now to the question of the stability of the steady configurations of the hydrodynamic field described in
Sec. (2), with respect to infinitesimally small disturbances. Variables in Egs. (1-2) are made non-dimensional as follows:
radial and axial coordinates are divided by the reference length (v(co)/€2)/?, velocity components are divided by the
reference velocity r; (), pressure is divided by the reference pressure pr:Q?, viscosity is divided by the bulk value, v*(c0)
and time and the eigenvalue of the linearized problem are made non-dimensional using the factor v(c0)/2/(r:Q%?).



Here, 7} is the dimensional coordinate along the radial direction where the stability analysis is made. We define also the
Reynolds number by the relation:

1/2
R=r] (%) (13)

The perturbed non-dimensional velocity components and pressure are written as:
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Substituting the perturbed variables given by (14-17) in the non-dimensional continuity and Navier-Stokes equations
and dropping nonlinear terms we obtain:
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At this stage we assume that the perturbation variables are separable and look for a solution in the form:
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where 7 = ag — 8f, v and w are complex numbers, with (w) and S(w) being, respectively, the frequency and the rate
of growth of the perturbation. Parameters « and § are the components of the perturbation wave-vector along the radial
and azimuthal directions. For a given time, the phase of the perturbation is constant along branches of a logarithm
spiral, with the branches curved in the clockwise direction if 3 is positive and counter-clockwise, if negative. Substitution
of the perturbation variables in Egs. (19-22) leads to:
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where \? = a? 4+ 2. Equations (24-27) show that perturbation variables are not, strictly speaking, separable. In order
to overcome the problem it is necessary to make the parallel flow assumption, usually adopted in stability analysis of
growing boundary layers, where variations of the Reynolds number in the stream-wise direction are ignored. Adoption
of this hypothesis in rotating disk flow (Malik,1981, 1986, Wilkinson and Malik, 1985, Lingwood, 1995) is made by
replacing r by R in Eqs. (24-27):
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Equations 28-31 reduce to Eqs. 2.16-2.19 given by Malik (1986), in the case of constant viscosity fluids (v = 1, v =
V" = 0). By eliminating 7, neglecting terms of order R~2 and defining D™ = d"/d¢™, @ = a —i/R and \? = aa + 32 we
obtain a sixth order system of two coupled equations in the form:
(iv (D* = X?) (D* = X*) + i/ D (2D* — X* = X*) + v (D? + X?) + R (aF + G —w) (D* = X?) —
R(aF" +BG") —iHD (D* = X*) —iH' (D* — X\*) —iFD*) h+ (2(G+1)D +2G'+

¢ (aF" + BG") +yYX° (aF' + BG') + 4 (aF' + BG') D> + 24 (aF" + BG") D) n=0 (32)
(2(G+1)D —iR (aG' — BF')) h+ (iv (D* = X\*) + iv'D + R(aF + G —w) —iHD — iF+
i) (aG' — BF”) D +itp (aG" — BF")) n =0 (33)

Equations 33-33 reduce to Egs. 2.20-2.21 given by Malik (1986), in the case of constant viscosity fluids and are now
rewritten in the form:
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Eq. (34) defines a generalized eigenvalue/eigenfunction problem. The eigenfunctions are the normal modes of the
model, the imaginary and real parts of each eigenvalue being, respectively, the rate of growth and the angular velocity of
the perturbation relative to the angular velocity of the disk. Positive ®(w) means perturbations that turn with angular
velocity smaller than the disk velocity, while negative (w) means perturbations that turn faster than the disk.
For a given viscosity profile the parameter space of the problem contains three variables, the Reynolds number and
the perturbation wave-vector components o and f.
Boundary conditions of the problem require non-slip flow and vanishing axial component of the velocity at the
electrode surface. These conditions are already fulfilled by the base-state, so the hydrodynamic field cannot be modified
by the perturbation at the electrode surface. In consequence we must require g = h = 0 in £ = 0. Moreover, we conclude

from Eq. (24) that A’ = 0 at the electrode surface. In ¢ — co we require that the perturbation vanishes (g = h = 0)
and that A’ = 0.



4. Numerical Procedure

The numerical precedure consists of finding the neutral stability curves (S(w) = 0) in the space of parameters «,
and R, for stationary perturbations turning with the angular velocity of the disk R(w) = w, = 0.

Building the neutral curves requires finding the set of points c(s) = (a(s),B(s), R(s)) that satisfy F (c(s)) = 0,
where F : R®*— > R? is given by F = (S(w), R(w) — wp)?. The neutral curves are built using a Predictor-Corrector
Continuation method described in E. Allgower, K. Georg (1991). Here, for completeness, we will give a short description
of the employed method:

e The perturbation frequency wy is specified and an initial point co, in the parameters space «, 8, R is given. This
point is not necessarily on the neutral curve;

e This initial point is corrected using an inexact Newton iteration given by
gt =d —F () F() (35)
where F’(vo) 7 is the pseudo-inverse of Moore-Penrose of the Jacobian of F. The Jacobian is computed numerically,
using a finite difference approximation.

e To obtain a new point, first a Predictor step is employed, using a first order Euler approximation:
A =ci+ht(F'(c)) (36)
where h is a suitable step size, and ¢(F'(c;)) is the tangent vector to curve c(s).

e The value ¢} is corrected in a Corrector step using Eq. (35) iteratively until a satisfactorily converged value is
obtained.

e The solution of the generalized eigenvalue/eigenfunction problem required to evaluate F(c(s)) is obtained nu-
merically, using an efficient implementation of the Inverse Power Method for complex generalized non-symmetric
eigenproblems.

Validation of the numerical procedure is described in the paper by Pontes et al. (2002b).
5. Results

The purpose of this work is to perform a numerical investigation on the effect of a time-dependent perturbation
imposed to a given viscosity profile, on the neutral curve of stationary disturbances in rotating disk flow with a steady
viscosity profile according to Eq.(12), with (0)/v(c0) = 6 and g = 2.

For the sake of comparison, we present first the neutral curves of stationary disturbances, for constant viscosity fluids
and for fluids with the steady viscosity profile, already given by Pontes et al. (2002b, 2003). These curves are presented
in Fig. (3) and the destabilizing effect of the steady viscosity profile is clear.
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Fig. 3: Neutral curves in the R x o and R x 3 planes for stationary disturbances (®(w) = 0) in constant viscosity flows
(curves No. 1) and variable viscosity fluids (curves No. 2) with v(0)/v(c0) = 6.0 and ¢ = 2.00 (see Eq. 12).

‘We now turn to the effect of imposing a perturbation to the steady viscosity profile in the form 7, on the neutral curve
No. 2 shown in Fig. (3). Values assigned to 1 are +1, +1.5, +4 and +1.5:. The neutral curves were evaluated in domains
with length &nez = 25 and grids with 501 points uniformly spaced. The results are presented in Fig. (4) and briefly
summarized below.
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Fig. 4: Neutral curves in the R X o and R x 3 planes for stationary disturbances (R(w) = 0) in variable viscosity fluids
with v(0)/v(oc0) = 6.0 and g = 2.00 (see Eq. 12). Curves No. 1 refer to steady viscosity profiles; Curves No. 2: ¢ = 1.0;
Curves No. 3: 1 = 1.5; Curves No. 4: ¢ = —1.0; Curves No. 5: 1) = —1.5; Curves No. 6: ¢ = 1.0i; Curves No. 7:
1 = 1.54; Curves No. 8: 1» = —1.0i; Curves No. 9: p = —1.54.

Diagrams (a) and (b) compare the neutral curve obtained for a steady viscosity profile (curve No. 1), with those
obtained with % = 1.0 (curve No. 2), 1) = 1.5 (curve No. 3), ¢ = —1.0 (curve No. 4) and ¢ = —1.5 (curve No. 5). From
these curves we conclude that perturbations of the viscosity profile in phase with 7, the vertical component of the curl
of the velocity perturbations, render the flow less stable. Larger perturbations imposed to the viscosity profile lead to
neutral curves with lower critical Reynolds numbers. On the other extreme, when perturbations in opposite phase with
7 (¢ = —1.0 and —1.5) are imposed to the viscosity profile, a stabilizing effect is observed and larger magnitudes of the
perturbation applied to the viscosity profile result in larger stabilizing effects.

Diagrams (¢) and (d) in Fig. (4) compare the neutral curve obtained for a stready viscosity profile (curve No. 1),
with those obtained when the phase angle between perturbations applied to the viscosity profile and 7 are £m/2. These
diagrams show that perturbations with a phase angle of —m/2 render the flow less stable than the one obtained with a
steady viscosity profile and that this effect increases if larger magnitudes of the perturbation are imposed to that profile.

Table 1: Approximate coordinates of the absolute An opposite effect is observed for perturbations forming a phase
minimum of the neutral curves shown in Figs. 3, angle of 7/2 with n: the flow becomes more stable and the sta-

4 and 5. bilizing effect increases if perturbations with larger magnitude
are applied to the viscosity profile.
| P | R | « | B | Figure (5) shows the effect of the phase angle between the vis-
v = Const. | 286.3 | 0.38482 | 0.07753 cosity profile perturbation and 7 for || = 1. This figure shows
0 239.4 | 0.38577 | 0.08158 that viscosity perturbations in phase with 7 (¢ = 1.0) result in
1.0 201.9 | 0.36614 | 0.07932 the largest destabilizing effect, followed by those with a phase
—1.04 224.4 | 0.40842 | 0.08737 angles of —7w/2 (¢ = 1), ©/2 (¢p = —i), and 7 (¢p = —1.0), the
1.0¢ 249.7 | 0.37341 | 0.07801 with the last two playing stabilizing roles.
-1.0 275.4 | 0.40241 | 0.08334 Coordinates of the absolute minimum of the neutral curves pre-
1.5 182.2 | 0.34971 | 0.07720 sented in this work are given in Table 1.
—1.5¢ 216.4 | 0.41849 | 0.09040
1.5 254.9 | 0.36004 | 0.07546 6. Conclusions
-1.5 293.0 | 0.39372 | 0.08189

In conclusion we further analyzed the Pontes et al.‘s (2002a,
2002b, 2002c, 2003) previous stability work of rotating disk flows in electrochemical cells, where the fluid viscosity varies
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Fig. 5: Neutral curves in the R x o and R x 3 planes for stationary disturbances (R(w) = 0) in variable viscosity fluids
with v(0)/v(oc0) = 6.0 and ¢ = 2.00 (see Eq. 12). Curves No. 1 refer to steady viscosity profiles. Curves No. 2: ¢ = 1.0;
Curves No. 3: ¢ = —i; Curves No. 4: 1) = i; Curves No. 5: ¢ = —1.0

along the axis of the rotating electrode. Previous analysis did not take into account the coupling between the chemical
species and the hydrodynamic fields. So, the purpose of this work was having a first insight on the result of this coupling,
by investigating the effect of adding a time-dependent perturbation to the viscosity profile. Perturbations proportional
to 1), the vertical component of the curl of the velocity perturbation were added to the steady viscosity profile and the
evolution of the perturbed flow was investigated by means of temporal linear analysis. The results indicate that the
neutral curve is more affected by time-dependent perturbations of larger magnitudes introduced in the viscosity profile
but both stabilizing and destabiling effects were observed, dependig on the phase angle between the perturbation applied
to the viscosity profile and the velocity perturbation. These results suggest that the actual neutral curves may deviate
from those obtained on the assumption of steady viscosity profiles and point to the need of extending the analysis carried
up to now in order to take into account the coupling of the hydrodynamic and chemical species fields, through the
dependency of the viscosity with the concentration of the relevant chemical species.
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