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Abstract. The present work is concerned with an  alternative methodology for modeling both SSR (Slow Strain Rate) and CL 
(Constant Load) testing based upon Continuum Damage Mechanics. The modeling accounts for the stress corrosion cracking of the 
specimen in corrosive environments.  In this macroscopic approach, besides the classical variables (stress, total strain, plastic 
strain), an additional scalar variable related with the damage induced by plasticity and stress corrosion is introduced. An evolution 
law with environment dependent parameters is proposed for this damage variable. The model accounts for the stress corrosion 
effect through a reduction of the mechanical resistance of the specimen induced by the damage variable. The theoretical model was 
compared with the curves obtained experimentally in different acid solutions at room temperature showing a good agreement. The 
alloy/environments system was 304 austenitic stainless steel/acid chloride solutions. 
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1. Introduction  

 
Stress corrosion cracking remains as one of the main limitations for the use of austenitic stainless steels on 

chemical and petrochemical industries. The combined effect of corrosion and mechanical stress imposed on the material 
is extremely complex. The mechanisms proposed to explain microscopically the cracking initiation and propagation 
processes are not able to elucidate all aspects of the phenomenon in different metal/environment systems[1]. Therefore 
attempts to predict this phenomenon in macroscopic scale models are advisable. 

Slow strain rate and constant load tests are widely used on stress corrosion cracking research as the basic 
experimental technique to promote the incidence of cracking and to determine the ranking of susceptibility of different 
alloys in several corrosive environments. With this methodology, however, the assessment of "threshold values" to be 
used as design parameters is not a simple task in the present state of the art of materials research. This limitation 
induces the use of the SSR and CL testing only as "go-no go" test for materials selection. Some basic information 
required, for instance, time to failure in service, can not be inferred from this approach. The most important reason for 
the limitation described is the complexity of stress corrosion mechanism that involves the conjoint action of mechanical 
and electrochemical processes. 

Despite the lack of definition of a basic mechanism for stress corrosion cracking, the evaluation of the 
susceptibility to cracking is a basic requirement for safe and economic operation of many types of equipment. This 
objective is accomplished by the execution of a set of laboratory tests that simulates the conditions of SCC incidence. In 
this situation, slow strain rate testing is the most important technique used to rank the susceptibility of different 
materials in a specific environment. Constant load and constant displacement tests are frequently used as an auxiliary 
technique in order to obtain more detailed information about the resistance of the material. These tests, however, do not 
provide basic parameters to be directly used in engineering design or to determine the “safe life” of equipment. This 
limitation can be explained as a consequence of the nonexistence of a model to interpret the macroscopic behavior of 
the material registered during the SCC tests. 

The most interesting possibilities of macroscopic modeling of stress corrosion testing are provided by Fracture 
Mechanics and Continuum Damage mechanics. In the case of Continuum Damage Mechanics, the damage (geometrical 
discontinuities induced by the deformation and corrosion processes) is taken into account through an internal variable 
related with the loss of mechanical strength of the system due to the damage (geometrical discontinuities induced bye 
the deformation process). This approach introduces the possibility of considering important physical phenomena like 
hardening, plasticity, viscoplasticity and corrosion.  

 
2. Experimental procedures 
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Slow strain rate (SSR) and constant load (CL) tests were performed at different acid environments with chloride ions. In 
these tests it was used an AISI 304 stainless steel with the chemical composition presented in Table 1. 
 
 
   Element C S Ni Si Mo Mn Cr Fe 

Wt % 0,06 0,005 8,03 0,47 0,03 1,40 18,95 Bal. 
Table 1: chemical composition of the 304 austenitic stainless steel 

 
The steel was normalized at 1050°C for 30 minutes in argon atmosphere and water-quenched. The surface of 

the samples was ground to grit 600 with emery paper. After surface preparation, the samples were washed with distilled 
water and alcohol, and dried with hot air. The round specimens were designed according to ASTM E-8 standard with 
4 [mm] nominal diameter and 16 [mm] gauge length. The samples were loaded with 1.5 yield stress in the constant load 
testing and the strain rate used on slow strain rate testing was 3.0x10 -6 s -1. The aerated solutions were prepared from 1 
M sodium chloride acidified with 1 M chloride acid to adjust the desired pH. All the measurements were performed at 
room temperature under free corrosion potential. 

 
3. Modeling 
 

In this paper, a theoretical analysis, developed within the framework of continuum damage mechanics [2], is 
performed to provide a better understanding of the slow strain rate test. All the proposed equations can be developed 
from thermodynamic arguments that are not presented here due to the limited space. A more detailed discussion may be 
found in [3-5]. 

Consider as a system a bar-type tension specimen with gauge length Lo and  cross-section Ao submitted to a 
prescribed elongation ∆L . The basic idea is to introduce a macroscopic variable D ∈ [0, 1], related to the loss of 
mechanical strength of the system due to the damage (geometrical discontinuities induced bye the deformation and 
corrosion processes). If D = 1, the bar is “virgin” and, if D = 1, it is “broken” (it can no longer resist to mechanical 
loading). The following model is proposed to describe the coupling between elasto-plasticity and the damage induced 
by the corrosion phenomenon 
  

 p =  E σ (1 - D) (ε - ε )  (1) 

 1 2 p pY = (1 - D) [v (1-exp(-v ε ))+σ ]  (2) 
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where <x> = max{0,x} and the variables  Pσ, ε, ε   are defined as follows 
   
 o P P o E Pσ=F/A; ε=(∆L/L ); ε = (∆L /L ); ∆L=∆L +∆L  (5) 
  

with E∆L  being the elastic or reversible part of ∆L and P∆L the plastic or irreversible  parcel  of ∆L . These variables 
coincide, respectively, with the nominal axial stress, the axial strain and the axial plastic strain while the system is 
submitted to a uniaxial state of stress. In the presence of macro cracks the real state of stress is no longer uniaxial and 
the variables σ , ε , pε  must be interpreted as global parameters. Y is an auxiliary variable related to the hardening 

induced by the  process of plastic deformation. E, K, N, v1, v2, pσ , η  and a are material constants and S, R parameters 
which depend on the material and environmental conditions. Equations (1), (2) will be called the sate laws and 
equations (3), (4) the evolution laws. Normally the evolution laws are used considering a “virgin” initial state: pε (t=0) 

= 0 and D (t=0) = 0.  From equations (2) and (3) we have: 
  

 pdε
=0  if  σ Y

dt
≤  (6) 

 
1

N
1 2 p p pσ = (1 - D) [v (1-exp(-v ε ))+σ ]+K(dε /dt)  , if  σ>Y  (7) 

 



 
The variable Y is the elastic limit which is affected by the plasticity phenomenon (that causes an increasing of the 

elastic limit p
p

dY 0   D [0,1],  ε 0
dε

⇒ ≥ ∀ ∈ ∀ ≥ ) and by the damage (that causes a decreasing of the elastic limit 

p
dY 0   D [0,1],  ε 0
dD

⇒ ≤ ∀ ∈ ∀ ≥ ). Equation (7) with D=0 is a classical expression for elasto-viscoplastic materials 

[2]. The experimental identification of the parameters K, N, v1, v2 and pσ  is reasonably simple and it is described in this 

reference. The parcel 1 2 p p[v (1-exp(-v ε ))+σ ]  models the non linear relation between the elastic limit Y and the plastic 

deformation pε . This expression is verified experimentally and is found in literature [2]. 

 The term 
1

N
pK(dε /dt)  in equation (7) is related to the viscosity-hardening and is responsible for the 

dependency of the elastic limit on the rate of plastic deformation. The constant pσ  corresponds to the elastic limit when 

the strain rate is very small ( pd
0

dt
ε

→ ). 

 The variable D is related to the reduction of the free energy of the mechanical system due to the damage 
induced by the deformation process and corrosion. From (2), it is simple to verify that Y 0  when D 1→ → . It is also 
possible to verify from (7) that σ 0  when D 1→ → . The evolution law (4) for the damage variable may be divided in 
two parts: one related to the plastic deformation and other related to the stress corrosion 
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where plast  D is the plastic damage and cor D is the corrosion damage. If the rate of plastic deformation is equal to zero, 
there is no evolution in the plastic damage 
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3.1. Modeling of slow strain rate tests 
 

In SSR testing, the deformation of the specimen is prescribed: ε(t) = α t (α is the strain rate).   Using 
equations [1 - 4] it is possible to verify that, in this case, the plastic deformation εp and the damage variable D at a given 
time instant  t  can be determined  by solving the following system of ordinary differential equations: 

 

 p p 1 2 p p
p

Nd (1 - D) E ( t - ) (1 - D) [v (1-exp(-v ε ))+σ ]
  ;  (t 0) 0

dt K
 ε α ε −
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If  εp and D are known at a given instant t, the stress  σ  and the variable Y can also be obtained using the following 
equations: 
 
 p  (1 - D) E ( t - )σ = α ε  (12) 
 1 2 p pY  (1 - D) [v (1-exp(-v ) ]= ε + σ  (13) 
 
3.2. Modeling of  constant load tests 
 

In a constant load test, the value of the stress σ ate every instant t is known: o(t)    tσ = σ ∀ .  Using equations 
[1 - 4] it is possible to verify that, in this case, the plastic deformation εp and the damage variable D at a given time 
instant  t  can be determined  by solving the following system of ordinary differential equations: 
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If  εp and D are known at a given instant t, the stress  σ  and the variable Y can also be obtained using the following 
equations 
 

 o
p(1 - D) E

σ
ε = + ε  (16) 

 1 2 p pY  (1 - D) [v (1-exp(-v ) ]= ε + σ  (17) 
 
Supposing that the plastic damage is negligible in a constant load test, it is possible to find the solution of the 
differential equation that governs the damage evolution  
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Since rupture occurs when D=1, it is possible to compute the time tr until the rupture 

  

 1 R+1 -R
r r o

1D=1-(1- t t ) with t = (Sσ )
R+1

 (19) 

 
The evolution law for the stress corrosion damage is similar to the creep damage law proposed by Kachanov [6].  

In low strain rate tests in austenitic steels, the damage variable increases slowly until almost the end of the test 
(t = tr) when it increases very fast until rupture (D=1), as it is shown in figure 1.  
 

 
Figure 1: Stress corrosion damage evolution in a slow strain rate test. 

 
If this kind of damage behavior is observed, It is usual to consider a critical value Dcr of the damage variable, 

beyond which the evolution to the value D=1 is so fast that it can be considered instantaneous. If, in a conservative 
approach, the failure is considered to happen when D=Dcr, the following expression is obtained  
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Equation (19) or (20) allows to obtain curves of the damage evolution for constant load tests under different 

conditions. Examples of this curves are shown in the next section. It is interesting to remark that the parameters R and S 
are not independent and that they are related with the time tcr through relations (19). The experimental identification of 



 
the parameters R and S for a given pH is made from one low strain rate test and one constant load test. From the 
constant load test it is obtained the value tcr. Since oσ  and t are fixed, the parameters R and S will be related through 
equation (19). Hence, it is only necessary to identify the value of R in a tensile test. 

To understand how the model describes the evolution of the deformation in a constant load test, it is necessary 
to take the derivative of equation (1) 
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Since σ is a constant and hence 
d
dt
σ

= 0, it comes that  
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If the plastic damage is negligible, using equation (19) it is possible to verify that the first term in the right side 

of equation (22) can be written in the following alternative form 
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Neglecting the plastic damage, the rate of plastic deformation (the second term in the right side of equation 

(22) ) is given by the following equation obtained from (2), (3) and (19 
 

 

NN 1 R+1
p o r p p1 2o

dε σ - (1- t t ) ) [v (1-exp(-v ε ))+σ ]σ -Y
 = =  dt K K  (24) 

 
If oσ is smaller than pσ , the rate of plastic deformation will be zero. If oσ is bigger than pσ , the rate of plastic will be 

different than zero. In this case, the term p p1 2[v (1-exp(-v ε ))+σ ]  will increase until a maximum value p1[v +σ ] . The 

term 1 R+1
r(1- t t ) )  will decrease until zero. It is possible to verify that this modeling allows the description of three 

typical regions of the corrosion elongation curve  I (see figure 2):  
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Figure 2: Typical corrosion elongation curve 

 
Using  (22) – (24) it is possible to obtain the following expression for the elongation rate 
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          Since the damage variable (both the plastic and corrosion damage) is approximately equal to 1 during most of the 
test,  it is possible to obtain the following analytical expression for the steady state elongation rate ssε  
 

 
N

o p1
ss   = 

σ - [v +σ ]
K

ε  (27) 

 
The influence of the steady state elongation rate and its relation with the time to failure has been object of different 
recent papers [7]. 
         As it is shown in the next section, the corrosion elongation curve is very well described by this model steady state 
elongation rate, time to failure, etc.). 
 
4. Comparison with experimental results 
 
To evaluate the adequacy of the model presented, samples of stainless steel were tested in constant load test and slow 
strain rate test, and the experimental results were checked with the model. The model parameters identified 
experimentally for the alloy described in Table 1 are given by: E= 193000 MPa; K = 95,336 (MPa s )1/N , N = 165; a = 
52; η = 0,013 (MPa h)-1. Based on experimental observations, it was adopted the following critical value for the damage 
variable: Dcr = 0.13. 

 

 
-1/R

-1/R

1/472.52 (MPa h) 35
S  1/1358.63 (MPa h)  R  6.5 

0 - air 0 - air

pH = 0,0 pH = 0,0
- pH = 0.5 - pH = 0.5

 -  -    
   = =   
   

  

 (28) 

 
The systems of ordinary differential equations formed by equations (10), (11)  (slow strain rate test) and (14), 

(15) (constant load test) were solved using embedded 4th order Runge-Kutta Cash-Karp method with 5th order error 
estimate. The variable order Runge–Kutta method is a family of explicit Runge–Kutta formulas. Each member of the 
family consists of a fifth-order formula that includes embedded formulas of orders from 1 to 4. A proper order formula 
is chosen by calculating the solution at several different orders before the full Runge–Kutta step is computed. The 
detailed algorithm is included in the work of Cash and Karp [8]. 

 
4.1. Constant load tests 

 In this section, the results of constant load tests performed in different environments are compared 
with the model previsions. Figure 3 shows the theoretical and experimental corrosion elongation curves at a constant 
stress ( oσ =375 MPa) obtained in the air, and in aerated solution prepared from 1 M NaCl acidified with 1 M HCl to 
adjust the desired pH to 1.0 and 0.5. The model prevision is in very good agreement with the experimental results. 
 

 
Figure 3: stress elongation curves in different environments. oσ =375 MPa.  



 
Neglecting the plastic damage and using equation (20) with a critical damage Dcr = 0.13, it is possible to obtain 

the fracture time tr for constant load tests with σo=375 MPa for different pH’s.  Table 2 shows the fracture time obtained 
experimentally for different pH’s and the theoretical value tr. 
 

tr experimental model 
pH=0,50 372 h 372 h 
pH=0,00 90,28 h 90 h 

Table2: experimental and theoretical fracture time. 

 
Figure 4 shows the theoretical oσ - log(tr) curve. The behavior is almost linear, which is in agreement with experimental 
observations [7] for austenitic stainless steel in acid environments at room temperature. 

 

 
Figure 4: Relative stress corrosion cracking resistance. Model prevision. 

 
4.2 Slow strain rate tests 
 

In this section, the experimental stress-strain curves obtained in slow strain rate tests performed in different 
environments are compared with the model previsions. Figure 5 shows the theoretical and experimental stress-strain 
curves with ε  = 10XE-6 obtained in the air and in aerated solution prepared from 1 M NaCl acidified with 1 M HCl to 
adjust the desired pH to 1.0 and 0.5. The model prevision is also in very good agreement with the experimental results. 
 

 
Figure 5: Stress–strain curves for different pH’s. ε  = 10XE-6. 

Figure 6 shows the damage evolution computed for the SSRC tests performed in the air and in a solution with 
pH = 0.50. From this calculation it is possible to observe that the corrosive environment strongly affects the damage 
evolution. This parameter shows explicitly the evolution of damage due to stress corrosion along the testing. 

The damage variable presents a stable evolution until a critical value Dcr≈0.13. After this critical value is 
reached, the damage increases abruptly until the limit value D=1 corresponding to the fracture. At this final stage, the 
plastic damage is responsible for the abrupt increase of the damage rate. 

Although the good agreement between model prevision and experiments in constant load tests, in the case of 
slow strain rate tests the results are not very good for small values of pH, as it is shown in figure 7. Such limitation of 
the model in the environment with pH = 0.00 may be explained by the more uniform distribution of the cracks induced 
by SCC which modify the damage and subsequently the mechanical behavior as a whole..  

In environments with higher values of pH, the alloy is virtually unattacked over most of the surface, while fine 
cracks progress through it. Nevertheless, in a typical SSRT with pH =0.0, around 60 cracks were found for a gauge 
length of 16mm besides an even corrosion. 



 

 
Figure 6 : Damage evolution for different environments. 

 

 
Figure 7: Stress–strain curve, pH = 0.0. ε  = 10XE-6. 

 
Such a great density of cracks requires a gradient enhanced damage theory such as proposed by Chimisso [9]. 

In this theory, an evolution law with an additional tern must be used 
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where z is the axial coordinate and C a material parameter. The smaller is C, the most localized is the damage. 
However, the earlier proposed evolution law is suitable to model the majority of experimental results presented here, 
regardless the specific micro-mechanism that takes place in the interface metal-electrolyte. 
 
5 Sensitivity Analysis 
 
Sensitivity analysis is a commonly methodology of studying the effect of parameter variations on the behavior of 
mathematical models in various branches of mechanical field. This procedure used in conjunction with traditional 
digital simulations resulting in an added insight into behavior of models. An important requirement in parameter 
estimation is that the sensitivity coefficients should not be of small magnitude, and when two or more parameters are 
estimated simultaneously, their sensitivity coefficients must be linearly independent over the experimental time domain. 
 
In the present work, we analyzed the scaled sensitivity coefficients, which are defined as 
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to analyze CL test and 
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to study SSR test. In both equations, sβ  are the parameters used in the present sensitivity analysis and may be one of 

these six parameters: { }1 2, , , , ,S R K N v v . As it can be observed in equations. (30) and (31), the scaled sensitivity 



 
coefficients have all the same units of ε  (in CL test) or σ  (in SSR test). The sensitivity coefficients were calculated 
using a numerical approximation. Therefore, equation (30) was calculated as 
 
 

( ) ( ) ( )1 s s 6 1 s s 6

s s

t , , , , , , , ,
2

∂ε ε β β + ∆β β − ε β β − ∆β β
=

∂β ∆β
  , s= 1, 2, ..., 6          (32) 

 
 
and equation (31) as 
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Similar shapes (time dependence) of sensitivity coefficients for two different parameters indicate that their effects on 
the model response are similar, being, therefore, impossible to tell them apart. Larger sensitivity coefficients are related 
to better chances of obtaining good estimates. See the curves related to the constant load test to observe that 1v  and 2v  
are linearly dependent and, indeed, have higher effects on model. R and S have the biggest magnitude at the end of the 
test. 
 

 
 

Figure 7: Sensitivity curves for constant load test and slow strain rate test. pH = 0.0 
 
This analysis is important to demonstrate which parameters are really important in each models and consequently these 
parameters should be measured or determined carefully. 
 
6. Concluding remarks  
 

The present paper is a step towards the modeling of stress corrosion cracking phenomenon in metallic 
materials by using Continuum Damage Mechanics. A simple continuum damage model is proposed to describe SSR and 
CL tests in austenitic stainless steels. The model previsions are in good agreement with experiments where the 
alloy/environments system is AISI 304 austenitic stainless steel/acid chloride solutions. The results obtained by 
experiment and predicted parameters time of fracture and total elongation are practically identical. The agreement 
between theory and experiment is very good in tests performed in air or in environments with pH value equal or greater 
than 0.50. For pH = 0.00, due to the more uniform distribution of corrosion cracks and even simultaneous uniform 
corrosion, the simulation of a slow strain rate test underestimates the elongation of the specimen at the rupture. Such 
limitation of the model may probably be surpassed by using an alternative approach based on gradient enhanced theory. 
The effective development of corrosion damage models not only agree with experimental results as a whole, but explicit 
the actual damage during the usual constant load and slow strain rate tests. 
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