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Abstract. Several techniques were developed for identification of modal parameters (natural frequencies, damping factors
and modes) for linear dynamical systems. The problem consists in identifying a minimum realization of the system in
state space using experimental data. If there is no noise all the identification techniques perform well; when there is
noise present in the data the techniques differ a lot. Our interest is in the Figensystem Realization Algorithm technique,
ERA, and in its variants: ERA/DC, that uses correlations for the Hankel matrices; OKID /ERA (Observer/Kalman filter
identification/ ERA), that introduces a state observer to compress the data and to improve the results of the identification;
OKID/ERA/DC, that uses correlations and a state observer. A comparison of the four variants is done using a structure
developed by Nasa Langley Research Center and known as Mini-Mast.

In the simulations done in order to compare the four variants we vary the degree of noise in the data, the flexibility of
the structure and the damping. The smaller the damping, the greater the flexibility, and the higher the degree of noise in
the data the harder is the identification of the structure. The examples we use separate well the four variants and show
that ERA/OKID/DC is the best method.

The results show that ERA is the less efficient variant in the presence of noise and it is not capable of identifying some of
the modes, and, even worse, it introduces spurious modes. The methods with observer can discriminate modes associated
with frequencies that are close. If the damping is small, even with little noise, the ERA and ERA/DC do not identify
well the parameters. In all cases the variants with observer were the most reliable and also required the least amount of
computational effort whence they should be preferred.
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1. Introduction

Some methods have been developed for identification of modal parameters in the time domain. A group of
them, known as realization algorithms and based on the minimum realization theory in linear systems analysis
conceived by Ho and Kalman, is studied in this work. The formal application of the minimum realization theory
for identification of modal parameters was first introduced for Juang and Pappa, 1985, with the Eigensystem
Realization Algorithm (ERA). An extension of the ERA using data correlation gave origin to the ERA/DC
Juang et al., 1988. Later, Juang et al., 1993, had presented a new algorithm that calculates the system Markov
parameters using the OKID (Observer/Kalman filter identification).

Juang, 1994, made an extensive study of the method ERA and its variants showing many successful practical
cases, studying the way to select the number necessary of observer Markov parameters and system Markov
parameters for a particular system to get the biggest amount of data with low contamination for noise. Lew
et al., 1993, had studied the method ERA and ERA/DC for identification of modal parameters, comparing
them with other methods, testing the methods for some levels of noise and damping factors bigger than 1%.
Abdelghani et al., 1998, compared the OKID /ERA with other methods, also for some levels of noise, but without
varying the damping of the system.

The aim of the present study is to compare the effectiveness of the ERA and its variants to identify the
modal parameters in a MIMO system (Mini-Mast), with some modes associated to almost identical natural
frequencies, in the presence of low or high noise levels. Also, is studied if the separation of frequencies property
is kept in the case to vary in the system the damping factor, studying for low or high damping for different
noise levels.

2. Mini-Mast problem

In the numerical example a simulated Mini-Mast model is considered (see Fig. (1)). The Mini-Mast is a
deployable space truss of 20 m of length, built for NASA Langley Research Center for research in structural
dynamics and active control of vibrations. It is deployed vertically and cantilevered from its base in a rigid
foundation. The system has two actuators (torque wheels) and two sensors (Kaman sensors).
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Figure 1: The Mini-Mast structure (Abdelghani et al., 1998).

The mathematical model has 5 modes (10 states) that are listed in Tab. (1), the first two frequencies are
close and the associated modes representing the first bending mode in the z and in the y axes, respectively;
the third mode is the first torsional mode; the last two frequencies are also close, and the associated modes are
the second bending mode; this make with that the model is enough complex to test the identification methods
employed. The matrices of the system in space of states are shown in Lew et al., 1993.

Table 1: Modal parameters of the Mini-Mast’s mathematical model

mode | w (Hz) | ¢ (%)
1 0.8010 1.8

2 0.8016 1.8
3 4.3644 1.2
4 6.1041 1.0
5 6.1568 1.0

As magnitude of comparison of the exactitude of the methods in the identification, we consider the maximum
singular values of the function of transference of the identified system. Only the frequencies identified inside of
the band up to 10 Hz are considered. The number of samples is always | = 1800 with a sampling time of 0.03
s. For the comparison, the dimension of the Hankel matrix in ERA and OKID/ERA, and the dimension of the
Hankel block correlation matrix in ERA/DC and OKID/ERA/DC, is kept the same for each case of study, as
suggested for Lew to keep same times of execution of the algorithms.

The inputs used in the simulation are gaussian white noises with average zero and standard deviation 10.
In the study are considered 3 levels of noise of 1%, 5% and 10%, for each case of study of the system with low
damping (¢ < 1%), average damping (1% < ¢ < 4%) and high damping (¢ > 4%). The process noise is set
at £% of the input and the measurement noise about £% of the maximum output, both as standard deviation
ratios, where f is the level of desired noise. To observe the consistency of the algorithms, the average of 20 runs
in each analysis was calculated.

3. System with average damping

The damping factors of the original system is in the band 1% < ¢ < 4%.

In the ERA, were used k = 250 (k + 1 system Markov parameters calculated).

In the ERA/DC, were used k = 325 (k + 1 system Markov parameters calculated).

In the OKID/ERA, were used p = 50 (p + 1 observer Markov parameters calculated) and & = 250 (k + 1
system Markov parameters calculated).

In the OKID /ERA /DC, were used p = 50 (p+ 1 observer Markov parameters calculated) and k = 325 (k+1
system Markov parameters calculated).



3.1. CASE: 1%<(<4% with low noise levels (1%)

Table 2: Low noise identification results for system with average damping: natural frequencies (w) and modal
damping factors ().

mode 1 mode 2 mode 3 mode 4 mode 5
wHz) (%) | wHz) (%) | wlHz) (%) | wlHz) (%) | w(lHz) (%)
TRUE 0.8010 1.800 | 0.8016 1.800 | 4.3644 1.200 | 6.1041 1.000 | 6.1568 1.000
ERA 0.7917 1.447 | 0.8034 2.958 | 4.3655 1.188 | 6.1034 0.910 | 6.1556 0.995
ERA/DC 0.7929 1.456 | 0.8075 2.042 | 4.3587 1.202 | 6.1033 1.023 | 6.1600 1.012
OKID/ERA 0.8009 1.806 | 0.8016 1.786 | 4.3659 1.285 | 6.1063 1.133 | 6.1584 1.036
OKID/ERA/DC | 0.8009 1.806 | 0.8016 1.787 | 4.3659 1.284 | 6.1063 1.132 | 6.1584 1.036

For average damping and with 1% of noise, all modes are sufficiently well identified by the four variants (fig.
(2)). Tab. (2) show good results for the natural frequencies and can be observed a little better approach with

OKID/ERA and OKID/ERA/DC in the identification of the damping factors, especially with those associate
to modes 1 and 2.
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Figure 2: Mini-Mast 1%< ¢ <4% (1% of noise).

3.2. CASE: 1%<(<4% with medium noise levels (5%)

Table 3: Medium noise identification results for system with average damping: natural frequencies (w) and
modal damping factors (¢).

mode 1 mode 2 mode 3 mode 4 mode 5
wHz) (%) | wHz) (%) | wlHz) (%) | wlHz) (%) | w(lHz) (%)
TRUE 0.8010 1.800 | 0.8016 1.800 | 4.3644 1.200 | 6.1041 1.000 | 6.1568 1.000
ERA 0.8011 2.427 | 0.8093 1.183 | 4.3600 1.138 | 6.0988 1.022 | 6.1532 1.009
ERA/DC 0.7989 1.180 | 0.8085 1.495 | 4.3649 1.078 | 6.1168 1.024 | 6.1383 1.174
OKID/ERA 0.8002 1.878 | 0.8014 1.809 | 4.3841 2.938 | 6.1156 2.024 | 6.1774  2.060
OKID/ERA/DC | 0.8005 1.867 | 0.8016 1.829 | 4.3774 3.137 | 6.1063 1.994 | 6.1733 2.117

For noise levels of 5%, the comparison of the maximum singular values of the transfer functions is shown
in fig. (3), the natural frequencies are still good identified by all the methods. The modal damping factors
associates to modes 1 and 2, are better identified by OKID/ERA and OKID/ERA/DC (see Tab. (3)), but
in the case of the modal damping factors associates to modes 3, 4 and 5, are better identified by ERA and
ERA/DC. This happens because the number of Markov parameters used in the ERA (k = 250) and in the
ERA/DC (k = 325) is enough to guarantee the decline, but in the case of methods using OKID, the number of

Markov parameters employed is bigger of the necessary ones, including dates contaminated after of the complete
decline.
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Figure 3: Mini-Mast 1%< ¢ <4% (5% of noise).

3.3. CASE: 1%<(<4% with high noise levels (10%)

Table 4: High noise identification results for system with average damping: natural frequencies (w) and modal
damping factors (().

mode 1 mode 2 mode 3 mode 4 mode 5
wHz) (%) | wlHz) (%) | wlHz) (%) | wlHz) (%) | wlHz) (%)
TRUE 0.8010 1.800 | 0.8016  1.800 | 4.3644 1.200 | 6.1041 1.000 | 6.1568 1.000
ERA 0.8052 1.128 | 0.8735 10.634 | 4.0600 0.790 - - 6.1552 0.977
ERA/DC 0.7977 2.220 | 0.8811 0.453 | 5.0567 1.010 - - 6.1566  1.007
OKID/ERA 0.7972 2.164 | 0.8026  1.649 | 4.3820 4.524 | 6.0937 2.512 | 6.1604 2.614
OKID/ERA/DC | 0.7973 2.159 | 0.8026 1.656 | 4.3818 4.533 | 6.0946 2.516 | 6.1599 2.620

For 10% of noise, the results in Tab. (4) show that OKID/ERA and OKID/ERA/DC keep a robustness to
the noise for the identification of the natural frequencies, obtaining errors smaller than 0.5% and differentiating
the two pairs of modes associated to almost identical natural frequencies, but ERA and ERA /DC have problems
to identify some modes (mode 4 was not identified) and obtaining errors of 16% approximately as in the case
of w3 with the ERA/DC. The errors in the identification of the damping factor using OKID is the same with
respect to the case of 5% of noise, but using ERA, the errors are between 49% for (s, and 2% for (5, greaters
that in the case of 5% of noise; and with the ERA/DC the error of (, increased for 75%.
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Figure 4: Mini-Mast 1%< ¢ <4% (10% of noise).



In the Fig. (4) is observed that with ERA/DC a computacional mode is introduced, because high noises
in the data introduce errors in the calculation of the modes of the system and the correlation of data or the
criteria of Modal Amplitude Coherence (Juang, 1994), that it was used in this work to distinguish the modes

associated with the system of the modes associated with the noise, are not sufficiently effective to eliminate the
strange modes.

4. System with high damping

The modal damping factors of the system are modified (x4) to compare the robustness of the methods when
the system has relatively high damping (¢ > 4%). In this case we will only use p = 35 (p + 1 observer Markov
parameters) in the methods with OKID; k£ = 100 (k + 1 system Markov parameters) in ERA and OKID/ERA

and & = 130 in ERA/DC and OKID/ERA/DC. The Tab. (5) show the modal parameters of the system with
high damping.

Table 5: Modal parameters of the system with high damping

mode | w (Hz) | ¢ (%)
1 0.8029 7.2

2 0.8035 7.2
3 4.3691 4.8
4 6.1086 4.0
5 6.1614 4.0

4.1. CASE: (>4% with low noise levels (1%)

Table 6: Low noise identification results for system with high damping: natural frequencies (w) and modal
damping factors (().

mode 1 mode 2 mode 3 mode 4 mode 5
wHz) (%) | wHz) (%) | wlHz) (%) | wlHz) (%) | w(lHz) (%)
TRUE 0.8029 7.200 | 0.8035 7.200 | 4.3691 4.800 | 6.1086 4.000 | 6.1614 4.000
ERA 0.7981 8588 | 0.8172 7.671 | 4.3811 5.001 | 6.0979 3.863 | 6.1831 3.590
ERA/DC 0.8077 8294 | 0.8115 7.868 | 4.3719 4.479 | 6.0930 3.905 | 6.1483  4.082
OKID/ERA 0.8033 7.180 | 0.8035 7.214 | 4.3656 5.238 | 6.1031 4.104 | 6.1735 4.101
OKID/ERA/DC | 0.8033 7.193 | 0.8035 7.206 | 4.3654 5.241 | 6.1032 4.104 | 6.1741 4.106

The comparison of the maximum singular values of the Transfer Functions is shown in the Fig. (5).
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Figure 5: Mini-Mast ¢ >4% (1% of noise).

For low levels of noise, the modal parameters of the system with high modal damping factors, can easily be



identified by any of the studied methods, the results with ERA and ERA/DC are as good as the ones from the
OKID methods because the Markov parameters of the system have fast decline.

4.2. CASE: (>4% with medium noise levels (5%)

Table 7: Medium noise identification results for system with high damping: natural frequencies (w) and modal
damping factors (().

mode 1 mode 2 mode 3 mode 4 mode 5
wHz) (%) | wlHz) (%) | wHz) (%) | wlHz) (%) | wlHz) (%)
TRUE 0.8029 7.200 | 0.8035 7.200 | 4.3691 4.800 | 6.1086 4.000 | 6.1614 4.000
ERA 0.8026 7.155 | 0.8168 7.223 | 4.3893 3.948 | 6.0948 4.069 | 6.1957 3.857
ERA/DC 0.8011 9.106 | 0.8132 5.953 | 4.3498 4.272 | 6.0567 5.064 | 6.1503 3.382
OKID/ERA 0.8017 7.212 | 0.8057 7.517 | 4.4116 7.122 | 6.0830 3.957 | 6.1505 5.340
OKID/ERA/DC | 0.8018 7.204 | 0.8058 7.521 | 4.4079 7.100 | 6.0816 3.961 | 6.1417 5.401

Increasing the level of noise to 5%, the results in the identification of the modal parameters of the system
are good for all the methods.
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Figure 6: Mini-Mast ¢ >4% (5% of noise).
5. System with low damping

To study the robustness of the methods in the presence of noise for the case of the system with low damping

(¢ < 1%), the modal damping factors of the system are reduced (x0.5). The Tab. (8) show the modal
parameters of the system with low damping.

Table 8: Modal parameters of the system with low damping

mode | w (Hz) | ¢ (%)
1 0.8009 0.9

2 0.8015 0.9
3 4.3641 0.6
4 6.1038 0.5
5 6.1566 0.5

In the algorithms, we will use the same number of observer Markov parameters and the system Markov
parameters that in the case of average damping because with low damping the decline is slow.



5.1. CASE: (<1% with low noise levels (1%)

Table 9: Low noise identification results for system with low damping:

damping factors (().

natural frequencies (w) and modal

mode 1 mode 2 mode 3 mode 4 mode 5
wHz) (%) | wHz) (%) | wlHz) (%) | wlHz) (%) | w(lHz) (%)
TRUE 0.8009 0.900 | 0.8015 0.900 | 4.3641 0.600 | 6.1038 0.500 | 6.1566 0.500
ERA 0.7958 1.919 | 0.8156 1.171 | 4.3654 0.807 | 6.1020 0.487 | 6.1599 0.487
ERA/DC 0.7959 2.026 | 0.8070 1.109 | 4.3649 0.693 | 6.1040 0.486 | 6.1589 0.486
OKID/ERA 0.8009 0.892 | 0.8014 0.902 | 4.3656 0.762 | 6.1049 0.592 | 6.1559 0.536
OKID/ERA/DC | 0.8009 0.892 | 0.8014 0.903 | 4.3656 0.761 | 6.1048 0.594 | 6.1559 0.537

For 1% of noise, all the methods identified the natural frequencies relatively well and they were able to
differentiate the modes associated to almost identical natural frequencies (see Tab. (9) and Fig. (7)), with the
ERA and the ERA/DC the errors are smaller than 2%, and with the OKID/ERA and the OKID/ERA/DC
the errors are smaller than 0.1%. OKID/ERA and OKID/ERA/DC obtain good results to identify the modal
damping factors, the biggest error is 27% for (3 and errors smaller than 1.2% are gotten for {; and (s; but the
ERA and the ERA/DC are not robust in the identification of the modal damping factors when the system has
slow damping, even though the noise level is only of 1%, the obtained errors are 113% and 126% for (; with

the ERA and the ERA/DC respectively, however the modal damping factors associates to modes 4 and 5 have
errors less than 2%.
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Figure 7: Mini-Mast ¢ <1% (1% of noise).

5.2. CASE: (<1% with medium noise levels (5%)

Table 10: Medium noise identification results for system with low damping: natural frequencies (w) and modal
damping factors (().

mode 1

mode 2 mode 3 mode 4 mode 5
wHz) (%) | wHz) (%) | wlHz) (%) | wlHz) (%) | w(lHz) (%)
TRUE 0.8009 0.900 | 0.8015 0.900 | 4.3641 0.600 | 6.1038 0.500 | 6.1566 0.500
ERA 0.7868 1.792 | 0.8183 1.633 | 4.3727 0.752 | 6.1039 0.651 | 6.1570 0.524
ERA/DC 0.7802 3.311 | 0.7872 1.135 | 4.3727 0.560 - - 6.1532  0.397
OKID/ERA 0.8009 1.028 | 0.8012 0.958 | 4.3843 1.902 | 6.1192 1.876 | 6.1484 0.785
OKID/ERA/DC | 0.8009 1.023 | 0.8011 0.961 | 4.3843 1.903 | 6.1186 1.880 | 6.1484 0.789

The results in Tab. (10) for 5% of noise show that ERA/DC does not identify the mode 4 in the system with
low damping, one of the modes associated to almost identical natural frequencies. The ERA can differentiate




the modes associated to similar natural frequencies and obtain good results identifying the frequencies of the
system, but the modal damping factors in modes 1 and 2 have errors of 99% and 81% respectively and the
modal damping factors associates to modes 3, 4 and 5 have errors smaller than 30%. The OKID/ERA and
OKID/ERA/DC can identify well the natural frequencies and too differentiate the modes associated to almost
identical natural frequencies with errors smaller than 0,5%, also the modal damping factors associates to the
modes 1 and 2 are good identified with errors of 14% and 7% respectively, but the modal damping factors
associates to the modes 3, 4 and 5 have errors of 217%, 276% and 58% respectively.
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Figure 8 Mini-Mast ¢ <1% (5% of noise).

5.3. CASE: (<1% with high noise levels (10%)

Table 11: High noise identification results for system with low damping:

natural frequencies (w) and modal
damping factors (().

mode 1 mode 2 mode 3 mode 4 mode 5
wHz) (%) | wHz) (%) | wlHz) (%) | wlHz) (%) | w(lHz) (%)
TRUE 0.8009 0.900 | 0.8015 0.900 | 4.3641 0.600 | 6.1038 0.500 | 6.1566 0.500
ERA 0.7903 1.164 | 0.8142 0.378 | 4.3621 0.460 - - 6.1524  0.442
ERA/DC 0.7961 1.872 | 0.8047 0.386 | 4.3670 0.538 - - 6.1553  0.440
OKID/ERA 0.7998 1.286 | 0.8014 0.884 | 3.7460 4.165 | 6.0965 2.217 | 6.1554 2.643
OKID/ERA/DC | 0.7987 1.129 | 0.8017 0.963 | 4.2615 3.277 | 6.1457 3.422 | 6.1774 1.765
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Figure 9: Mini-Mast ¢ <1% (10% of noise).



For 10% of noise, the OKID/ERA and OKID/ERA/DC keep its robustness with respect to the case with
5% of noise, and the ERA and ERA/DC do not identify the mode 4 (see Tab. (11)). The OKID/ERA and
OKID/ERA/DC differentiate the modes associated to almost identical natural frequencies, but in this case,
the results of the identification using the OKID/ERA is better than the results using the OKID/ERA/DC,
for example in the natural frequency associate to mode 3 (14% of error with OKID/ERA and 2.4% with the
OKID/ERA/DC). In the identification of the modal damping factors, with the ERA the errors are: 29%, 58%,
23% and 12% for (1, (2, (3 and (5 respectively, and with the ERA /DC the errors for the same factors of damping
are: 108%, 57%, 10% and 12% respectively. With the OKID /ERA the errors are smaller for {; and ¢(»: 43% and
2%, but greater for (3, (4 and (5: 595%, 344% and 428% respectively; and with the OKID/ERA /DC the errors
are slightly smaller: 26%, 7%, 447%, 584% and 254% for (1, (s, (3, (4 and (5 respectively. The comparison of
the maximum singular values of the Transfer Functions is shown in the Fig. (9) and is observed that strange
modes to the system was introduced by ERA and ERA/DC.

5.4. CASE: (<1% with high noise levels (10%) and p=100

The results of the identification of the natural frequencies using the OKID/ERA/DC and OKID/ERA in
the previous cases for system with low damping are good, but in the identification of the modal damping factors
in modes 3, 4 and 5 the errors are great for 5% and 10% of noise. It happens because the number of observer
Markov parameters used in the methods with OKID is not enough to guarantee the decline, but uses p = 50 to
keep similar times of execution of the algorithms and to be able to make the comparison. If now we use p = 100
observer Markov parameters in the methods with OKID to look the best performance of the OKID/ERA /DC;
e k = 250 system Markov parameters in ERA and OKID/ERA and OKID/ERA/DC, the news resulted are
show in Tab. (12).

Table 12: High noise identification results for system with low damping and p=100: natural frequencies (w) and
modal damping factors (¢).

mode 1 mode 2 mode 3 mode 4 mode 5
wHz) (%) | wlHz) (%) | wHz) (%) | wlHz) (%) | wlHz) (%)
TRUE 0.8009 0.900 | 0.8015 0.900 | 4.3641 0.600 | 6.1038 0.500 | 6.1566 0.500
ERA 0.7971 1.723 | 0.8138 1.450 - - 6.1157 0.431 | 6.1960 0.552
ERA/DC 0.7962 1.855 | 0.8162 1.510 - - 6.1055 0.337 | 6.1871 0.587
OKID/ERA 0.8020 1.002 | 0.8021 0.631 | 4.3442 0.935 | 6.1131 0.676 | 6.1723 0.995
OKID/ERA/DC | 0.8019 0.995 | 0.8021 0.617 | 4.3452 0.955 | 6.1124 0.634 | 6.1717 0.946

Is observed that with the ERA and ERA/DC, the mode 3 is not identified and with the OKID/ERA/DC
and OKID/ERA all the modal parameters of the system are good identified and improving its performance with
respect of the previous case with p = 50. The errors in the identification of modal damping factors in modes
3, 4 and 5 with the OKID/ERA/DC and OKID/ERA (with p=100) are minors (58-90%) that in the previous
case. But, with ERA and ERA/DC do not improve the results in the presence of high levels of noise, and can
be observed in Fig. (10) that strange modes to the system are introduced.
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Figure 10: Mini-Mast ¢ <1% (10% of noise) with p=100.



6. Conclusions

The results show that the OKID/ERA and OKID/ERA /DC are more robust than the ERA and ERA/DC,
performing better identification of the modal parameters of the Mini-Mast structure in all bands of damping
studied and with low or high levels of noise. Methods using OKID always can differentiate the modes associated
to almost identical natural frequencies.

In the case of the system with low damping, ERA and ERA/DC do not give good results, also when the
noise is not very high (5%), some in the modes had not been identified, and when the noise is high (10%) some
modes were not identified and also some spurious modes are introduced.

In the case of the system with average damping, all the methods have relatively good results with low levels
of noise, but for 10% of noise only the OKID/ERA and the OKID/ERA /DC identify all the modes but with
some errors in the values of the modal damping factors.

In the case of the system with high damping, all the methods can identify the modal parameters of the
system well and too differentiate the modes associated to almost identical natural frequencies, in the presence
of noise in levels of 1% and 5%.

As it was demonstrated in the last analyzed case, ( <1% and 10% of noise, with p = 100, the performance
of OKID/ERA/DC and OKID/ERA is better that with p = 50, because the decline of the system Markov
parameters for the system with low damping is slow.

The disadvantage to use greater number of observer and system Markov parameters is that the greater
computational time, but, on the other hand, the OKID/ERA and the OKID/ERA /DC, do not need the same
number of system Markov parameters that with the ERA and the ERA/DC when the system has low damping,
less number of system Markov parameters are needed with OKID because the observer Markov parameters
guarantee the decline.

How much bigger either the contamination of the data with noise, is necessary greater number of samples
and greater amount of system Markov parameters to be calculated.
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