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Abstract. The present work performs an inviscid  hypersonic flow simulation over a re-entry body. A small ballistic re-entry vehicle 
SARA configuration is numerically investigated by using the Euler equations. The governing equations are discretized in 
conservative form in a cell centered, finite volume procedure for unstructured triangular grids. Spatial discretization considers the  
upwind scheme. A MUSCL reconstruction of primitive variables is used in order to determine left and right states at interfaces. Time 
march uses, an explicit 2nd-order accurate, 5-stage Runge-Kutta time stepping scheme. The Gardiner chemical kinetics considers 5 
species with their combination and dissociation reactions. Mach number and pressure and temperature contours are presented. 
Ideal, inert and real gas will be considered. 79% of Nitrogen and 21% of Oxygen composes the gas. Freestream Mach 12 flow was 
selected to conduct numerical investigations. 
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1. Introduction  

 
The development of efficient numerical solvers is very important owing to the difficulties and high costs associated 

with the experimental work at high speed flows. Typical hypersonic flows undergo chemical and thermal processes that 
are very difficult to predict experimentally. Hence, the numerical simulation plays an important role in hypersonic 
vehicle design. The focus of the numerical methods is on the accurate simulation of flows with strong shock waves, 
capturing complex flow phenomena and variables variations for hypersonic flows (Anderson, 1989). 

The hypersonic fluid flow simulation over a re-entry body is quite some interesting in sense that a strong detached 
normal shock wave in the nose region is generated. This phenomenon is particularly interesting because the curved bow 
shock is a normal shock wave in the nose region, and away from this one has all possible oblique shock solutions for a 
given freestream Mach number. 

A finite volume formulation of compressible Euler equations in conservative form has been considered (Hirsh, 
1990). A high-resolution scheme is employed in order to obtain a good spatially resolution of the flow features. In this 
work the simulations are performed by using a second-order Liu flux-vector splitting scheme (Liu, 1996), implemented 
in an unstructured grid context. This scheme considers a MUSCL approach, that is, the interface fluxes are formed 
using left and right states at the interface, which are linearly reconstructed by primitive variable extrapolation on each 
side of the interface (Azevedo and Korzenowski, 1998). 

A minmod limiter is used in order to avoid any undesired oscillations in the solution. The equations are discretized 
in a cell centered based finite volume procedure on triangular meshes. Time march uses an explicit, second-order 
accurate, five-stage Runge-Kutta time stepping scheme. 

For the gas flow simulations one considers that 79%  of Nitrogen and 21% of Oxygen composes the gas. Real gas 
effects are considered for the reactive flow simulations(Pimentel, 2000). The chemical kinetic mechanism considers 
five chemical species, with their combination and dissociation reactions (Hachemin, 1995). The computations are 
performed considering . Results obtained for the inviscid simulations are presented, in order to analyse the 
phenomena presented in such flows. Results indicate that the scheme could adequately capture the flowfield features. 

12=∞M

The simulations are concerned with the implementation of unstructured grid, mesh refinement techniques for two-
dimensional inviscid flow problems of aerospace interest. The mesh refinement procedure uses a numerical sensor 
based on flow physical properties. 
 
2. Mathematical model  

 
The two-dimensional time-dependent, compressible Euler equation may be described, in conservative vector form, 

by 
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The vectors E and F are conservative flux vectors, Q is the vector of conservative quantities. If the equations are 
discretized in a cell  centered finite volume procedure, the discrete vector of conserved variables, , is defined as an iQ
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average over the i_th control volume. In this context, the flow variables can be assumed as attributed to the cetroid of 
each cell. The Equation (1) can be written in integral form for the i_th control volume as 
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where V represents the area of the control volume and S its boundary.  

The supersonic reactive flow will be computed using the unsteady 2-D Euler equations, thus neglecting molecular 
transport. These balance equations of mass, momentum, energy and species mass fraction can be written as 
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where  
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with  and NYp, ε  given by 
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where 
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In these equations ε  is the total energy per unit of mass, e is the internal energy, R is the universal gas constant. 

The internal energy, the standard-state enthaply and the specific heat at constant pressure per unit of mass of species i 
are noted ,  and .  and W  are the mass fraction and the molecular weight of chemical species i, 
respectively. 
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3. Chemical kinetics mechanism 
 

The chemical kinetics mechanism  for the reactive mixture of nitrogen and oxygen is due to Gardiner (Hachemin, 
1995). This mechanism considers 5 species ( , , N, O, ON) and 21 elementary reactions, and is given in Table 
(1). The chemical production rates are given by the Arrhenius law,  

2N 2O
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Table 1. Reaction mechanism for : A(m, mol, s) e E22 0−N a (Kelvins) 

 
Reações elementares A 

 
β Ea (Kelvins) 

N2+N2=>2N+N2 3.7e21 -1.6 113200. 
2N+N2=>N2+N2 1.08e13 -1.493 100. 
N2+O2=>2N+O2 1.4e21 -1.6 113200. 
2N+O2=>N2+O2 3.07e13 -1.493 100. 
N2+NO=>2N+NO 1.4e21 -1.6 113200. 
2N+NO=>N2+NO 3.07e13 -1.493 100. 
N2+N=>2N+N 1.6e22 -1.6 113200. 
2N+N=>N2+N 3.51e14 -1.493 100. 
N2+O=>2N+O 1.4e21 -1.6 113200. 
2N+O=>N2+O 3.07e13 -1.493 100. 
O2+N2=>2O+N2 3.64e18 -1.0 59380. 
2O+N2=>O2+N2 1.84e10 -0.714 109. 
O2+O2=>2O+O2 1.64e19 -1.0 59380. 
2O+O2=>O2+O2 8.28e10 -0.714 109. 
O2+NO=>2O+NO 1.82e18 -1.0 59380. 
2O+NO=>O2+NO 9.19e09 -0.714 109. 
O2+N=>2O+N 1.82e18 -1.0 59380. 
2O+N=>O2+N 9.19e09 -0.714 109. 
O2+O=>2O+O 4.56e19 -1.0 59380. 
2O+O=>O2+O 2.3e11 -0.714 109. 
NO+N2=>N+O+N2 4.0e20 -1.5 75500. 
N+O+N2=>NO+N2 2.16e19 -1.3217 97. 
NO+O2=>N+O+O2 4.0e20 -1.5 75500. 
N+O+O2=>NO+O2 2.16e19 -1.3217 97. 
NO+NO=>N+O+NO 8.0e20 -1.5 75500. 
N+O+NO=>NO+NO 4.32e19 -1.3217 97. 
NO+N=>N+O+N 8.0e20 -1.5 75500. 
N+O+N=>NO+N 4.32e19 -1.3217 97. 
NO+O=>N+O+O 8.0e20 -1.5 75500. 
N+O+O=>NO+O 4.32e19 -1.3217 97. 
N2+O=>NO+N 1.82e14 0.0 38370. 
NO+N=>N2+O 7.35e13 -0.07083 666. 
NO+O=>O2+N 3.8e09 1.0 20820. 
O2+N=>NO+O 4.07e10 0.886 4689. 

 
 The calculation of    and the molar production rates fk kω&  are performed using the CHEMKIN-II package. The 
termodynamic properties are calculated according to the procedures developed by Kee et al (1991). 
 
4. Numerical technique 

 
The numerical approach discretized the 2-D Euler equations in conservative form in an upwind, finite volume 

context considering an unstructured grid made up of triangles. The equations are discretized in a cell centered finite 
volume procedure. The spatial discretization algorithm is essentially concerned with finding a discrete approximation to 
the surface integral 
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For the flux-vector splitting case, a Liu formulation has been tested. The implementation of the 2nd-order scheme is 

based on an extension of the Godunov approach (Hirsh, 1990). The projection stage of the Godunov scheme, in which 
the solution is projected in each cell on piecewise constant states, is modified. This constitutes the so-called MUSCL 
approach for the extrapolation of primitive variables. By this approach, left and right states at a given interface are 
linearly reconstructed by primitive variable extrapolation on each side of the interface, together with some appropriate 
limiting process in order to avoid the generation of new extreme.  

The numerical fluxes E  and  can be expressed as the sum of the numerical convective flux and the numerical 
pressure flux at each cell interface (Liou, 1996). Therefore, the numerical convective flux is defined in terms of Mach 
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number, speed of sound and the quantity , defined as . For the AUSM +  formulation, the 
Mach number and the pressure are splitting accordingly some properties, as described in Liou (1996).  
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The Liou scheme implemented in this work considers that the convective operator can be expressed as a sum of the 
convective and pressure terms, given by the expression  
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where  represents the length of the ik  edge. Expressions of the terms  and , as well as details of the 
formulations can be found in Azevedo and Korzenowski (1998). 
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 Even considering a 2nd-order flux vector splitting scheme with a MUSCL approach, it is possible to obtain 
oscillations in the solution. Therefore one must use nonlinear corrections, namely limiters, to avoid any oscillations. In 
this work a simple minmod limiter was adopted. Time integration used an explicit, 2nd-order accurate, hybrid method, 
which evolved from the consideration of Runge-Kutta time stepping scheme. 

Adaptive mesh refinement, based on a sensor of flow property gradients, was performed to obtain a better 
resolution of strong discontinuities. The sensor definition could be expressed as  
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where ),,,,( Tvupn ρφ ∈ ,  and  are the maximum and the minimum values of the property in the 
flowfield. All results All results presented in this work have used a sensor based on all primitive variables. 

maxnφ nφ

 
4. Results 

 
The small ballistic re-entry vehicle SARA configuration was used to perform the numerical simulations, assuming 

freestream Mach number 12. For the gas flow one considers 79% of Nitrogen and 21% of Oxygen composes the gas. 
Pressure and temperature initial conditions are 0.1847 atm  and 300K, respectively.  

The numerical simulations was obtained by using 2nd-order Liu flux vector splitting scheme. Although this scheme 
could capture strong discontinuities without smearing the solution, one observes the generation of spurious numerical 
oscillations behind the shock wave. The development of  the carbuncle is visible in Figure (1).  

 
 
Figure 1. Velocity vectors showing carbuncle development.   
 

 This instability forms soon a protuberance in the region of nose. Starting simulations, a very small spurious vortex 
is still visible closest to the stagnation point. Since the magnitude of vorticity produced by a shock dependes largely on 
the magnitude of the tangencial velocity component, one will expect vortex severity to increase with increasing levels 
of velocity generated inside the structure of captured shock waves (Johnston, 1999). More artificial dissipation can 
avoid this carbuncle instability.  



 
The Figure (2) presents  the pressure contours obtained with 2nd-order Liou scheme, considering .  The 

contours indicate that the flow are well captured by this solution, the bow shock and the flow expansion over the body 
are well represented. The shock at the nose of the body is a normal shock, and away from this the shock gradually 
becomes curved and weaker. The hypersonic flow ahead the normal shock becomes subsonic. Slightly above  the nose 
region, the shock is oblique and pertains to the strong shock-wave solution. From the nose region until this point the 
flow is subsonic, and above it, all points on the shock correspond to the weak shock solution, and the region is 
characterized by supersonic flow.   

12=∞M

 The Figure (3) shows the temperature contours. 
 

 
 Figure 2. Pressure contours obtained considering . 12=∞M
 
 One can observe that the temperature contours are well captured by this numerical method. The streamline that 
passes through this normal portion of the shock impinges on the nose of the body and controls the values of stagnation 
pressure and temperature at the nose. 

 

 
 Figure 3. Temperature contours obtained considering . 12=∞M

 
5. Conclusions 

 
The present work performed an inviscid hypersonic flow simulations over a small ballistic re-entry vehicle SARA 

configuration. For the numerical simulations real gas effects are incorporate into the solver. The governing equations 
are discretized in a cell centered finite volume algorithm. Unstructured meshes was used to obtain the numerical 
simulations. The equations are advanced in time by an explicit, 5-stage, 2nd-order accurate, Runge-Kutta time stepping 
procedure. The spatial discretization scheme considered a 2nd-order Liu flux-vector splitting scheme. A MUSCL 
reconstruction of primitive variable extrapolation was performed in order to obtain left and right states at interfaces. The 
results indicated that the scheme was able to reproduce some phenomena presented in hypersonic flow.  
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