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Abstract. The attitude control of space vehicles is fundamental to accomplish a mission. This system faces several types of problems, 
among them stands out actuator’s nonlinearities. The actuator’ s (movable nozzle) nonlinearities cause the limit-cycle phenomenon, 
which impairs the control system design. This work aims to determine the parameters of actuator which cause the limit-cycle 
phenomenon. In order to do that, it is presented a method of identification based on the first harmonic analysis and data obtained 
from hardware in the loop simulation.  The describing function approach leads to analytical solution to obtain nonlinear parameters.  
Digital simulation using such results is compared to hardware in the loop tests. 
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1. Introduction 
 

In the design of control systems, it is usual to face problems which solutions have to compromise two, or even more, 
design criteria.  Such kind of problem happens regarding the attitude control system of space vehicles.  

The vehicle flexibility effect must be attenuated, otherwise it wil l became unstable.  This is usuall y done by a notch 
filter tuned at the bending frequency, but the notch filter also affects the limit-cycle.  On the other hand, the limit-cycle 
is usually adjusted by a lead filter, which may lead to instability due to the bending modes. 

The limit-cycle is caused by the actuator’ s nonlinearities.  Since nonlinearities cannot be modified or even cancelled, 
it is necessary to have a strategy to modify the limit-cycle. The sensitivity of the limit-cycle frequency regarding the 
nonlinear parameter helps to find out such strategy. 

To study this problem, the first step is to obtain a nonlinear model of the actuator. Although it is possible to find, by 
digital simulation, the values that reproduce the limit-cycle, it is not possible to be sure that they are the real values 
because the solution is not unique. 

The first harmonic analysis yields describing functions which permit to find a set of equations defined by the 
conditions to the limit-cycle existence.  The real data, obtained from the hardware in the loop simulation (frequency and 
ampli tude of the limit-cycle), are used to solve the equations and to determine the nonlinear parameters values. 
 
2. Model Structure 

 
The model proposed (Ferreira, 1996) to the actuator (Fig. 1) contains a 2nd order transfer function GA(S), a gain K 

and an integrator. This constitutes the 3rd order linear part of the model. The transport delay at the output is considered 
well known and its value is 7 milli seconds (Silva, 1998).  
 

 
Figure 1: Proposed actuator model1 
 

The linear part of the model, GA(S) and the gain K, was determined by the ARX algorithm, using sampled data of 
the actuator’ s response to steps inputs. Thus, KGA(S) is given by: 
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The values of the nonli near elements zm (dead-zone) and f (backlash), are determined by the solution of the set of 

equations, which define the conditions of limit-cycle existence. 
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3. Hardware in the loop simulation 
 

The hardware in the loop simulation consists of a simplified model of the vehicle and a PD controller, both digitally 
implemented. The real actuator is also present and is activated by a D/A card. The displacement of the actuator is 
measured by a displacement sensor, which is connected to an A/D card.  Fig. (2) shows the block diagram of the 
simulation.  The sampling frequency (200 Hz) is high enough, so that the digitization effects can be neglected.    
 

 
Figure 2: Hardware in the loop simulation 
 

As an example, lets consider Kp=9.8, Kd=0.06 and µβ=4.5.  Fig. (3) shows the response of both actuator and vehicle 
model. As it can be seen the limit-cycle phenomenon is present, and its frequency and amplitude can be measured. The 
gain and phase lag of the actuator are now available, and are used in the identification process. 
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(a)                                                                            (b) 

Figure 3: Actuators and system response 
 
4. The First Harmonic Analysis. 
 

The first harmonic analysis states that if a nonlinear element is been excited by a sinusoidal wave, and all 
Fourier Transform’s components - except the fundamental - can be neglected, then the nonlinear element may be 
approximated by a describing function. Since the limit-cycle looks like a sinusoidal wave, as can be seen in the Fig. (4), 
the first harmonic analysis is indicated.  
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Figure 4: Limit-cycle from the Hardware in the loop simulation. 



The describing function is defined as the complex ratio of the fundamental component of the nonlinear element by 
the input sinusoid (Slotine, 1991), i.e.: 
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where Y1 and X are the amplitudes of the fundamental component and the input respectively, φ1 is the phase of the 
fundamental component, ω is the frequency of the input sinusoid. 

Fig. (1) shows that there are two nonlinear elements in the model – dead-zone and backlash - which are 
approximated by its describing  functions.  The dead-zone describing function is given by: 
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which is a real gain since the dead-zone is an odd function.  The backlash’s describing function is: 
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with the Fourier coeff icients a1 and b1 given by: 
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and as can be seen, both Z(Xz) and F(Xf) do not depend on ω. 

The model of the actuator with the describing functions can be seen in Fig. (5). 
 

 
Figure 5: The actuator’s model with describing functions. 
 

The condition for the existence of limit-cycles (Gibson, 1963) in systems like the one shown in Fig. (6), is that: 
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Figure 6: A nonlinear system block diagram 
 

In other words, G(jω).N(X) should have the gain 1 and the phase lag equals to –180o. 
 
5. The method 
 

In order to obtain the parameters that produce the limit-cycle phenomenon, the system in Fig. (2) is rearranged  in 
Fig. (7).  Then, it is possible to separate transfer functions of actuator and of plant. 



 
Figure 7: Block diagram expressing the actuator and vehicle plus controller dynamics 
 
 The transfer function of the plant plus controller is given by: 
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thus: 
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The actuator’s transfer function, considering the describing functions of the nonli nearities, is given by: 
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where Z(Xz) and F(Xf) are given by equations (3) and (4) respectively, thus 
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where K1 = Xf  is the amplitude of the limit-cycle in the actuator output and ω its frequency, F(Xf ) = Rf  + j. If  and 
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The first harmonic analysis indicates that when the Eq. (6) has a solution, the limit-cycle exists.  Applying the Eq. 

(6) to the system described in the Fig.(7), it yields:  
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Let ( )zx XZ3410037Z ⋅⋅=  and Eq. (11) squared yields:  
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Substituting Eq. (11) on (12b), and after some manipulation, results: 
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Substituting Eq. (14) on (13) it results: 
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Since KK is a value determined by the hardware in the loop test (limit-cycle frequency ω and its amplitude K1 

besides the gain and phase of Gp(jω)), it is possible to solve Eq. (15) for Zx , which yields: 
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Considering Fig. (5) and the actuator output amplitude of limit-cycle K1 its possible to say that 
x
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Eq. (17) gives the value of the dead-zone gain from an arbitrary backlash (Eq. 5).  Thus, it is possible to obtain a set 
of possible solutions for the limit-cycle, but the real solution must satisfy Eq. (12).  The dead-zone zm can be calculated 
from Eqs. (3) and (18). 
 
6. Results 
 

The hardware in the loop simulation gives the frequency and the amplitude of the limit-cycle for a certain set of the 
controller gains. Let kp = 5.84, kd = 0.062 and µβ = 12.3, the amplitude and frequency obtained from the simulation are 
K1=4.89x10-3 rad and ω=8.57rad/s (Fig. 7). 

The values of the parameters obtained with the presented method are f = 0.0004364 rad (backlash) and zm = 0.0012 
rad (dead-zone). The digital simulation (Fig. 8) yields the limit-cycle in the Fig. (9). As it can be seen in the Fig. (9) the 
amplitude of the limit-cycle is 5.0x10-3 rad and the frequency is 8.57 rad/s. 

The digital simulation shows that the values of the parameters of the nonlinearities, obtained from the presented 
method, generates the limit-cycle and the frequency and amplitude fits very well.  However, there is some discrepancy 
with the shape of the wave, which is not a perfect sinusoid. These problems are generated by the model, that shall be 
refined. 
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Figure 7: Limit-cycle from the hardware in the loop simulation 
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Figure 8: Digital simulation 
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Figure 9: Limit-cycle from the digital simulation 
 
7. Conclusion 
 

This paper presents a method for the parameter identification of a nonlinear model, based on the first harmonic 
analysis and data obtained from the hardware in the loop simulation. The method is applicable in cases where the first 
harmonic analysis  is indicated and the limit-cycle phenomenon exists.  

Although there is some discrepancy in the shape, the limit-cycle obtained from the model has the same value of 
frequency and very close amplitude to that obtained from the hardware in the loop simulation. This discrepancy in the 
shape of wave indicates that the actuator model has to be improved.   

The presented method gives an analytic solution for the parameters, which makes the computer program easier to 
implement.  Although some algebraic manipulation is needed, the method is quite simple and eff icient.  
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