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Abstract. An application in the automotive filed for the Genetic Learning Automata with Fuzzy Classifier System is presented in this 
work. As a non-linear model free based strategy, the major advantages of this approach are its modularity and its extensibility. A 
controller designed using this method for a simple longitudinal vehicle dynamic model is applied to a non-linear model with 107 
degrees of freedom giving a reasonable performance. Comparisons with a conventional controller are also carried out. 
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1. Introduction  
 

Active chassis systems have attracted the attention of many researches over the past twenty years with over 200 
paper published in this field. Some researches have examined different vehicle models, with the optimisation and tuning 
of the control parameters for a specific case (Marsh, 1995; Brandao, 1999 and Brennan, 2001). Evolutionary algorithms 
have also been applied for this purpose as Li et al. (2000) and Maclay et al. (1993). 

One of the most important problems that the researchers nowadays have to face is that the controller is usually 
designed for a specific vehicle, moreover for a specific model of a certain car. If any Original Equipment Manufacture 
decides to apply the controller on a different vehicle, it may have to be redesigned for the specific application. 
Therefore, what this work focuses on is a model free approach to design a controller for the Anti-lock Brake System 
(ABS), which is robust enough to support parameter changes. In this way, the controller can be applied to a wide range 
of vehicle with a reasonable performance and few tuning time. 

In this paper, a new method to approach this problem is presented. Basically, it uses an evolutionary computing 
approach, the Genetic Learning Automata (GLA), to determine a Fuzzy Logic Controller (FLC) for an ABS. The FLC 
is a model free control approach and the GLA is used as a search engine to find the best set of solutions that matches the 
design objectives. Furthermore, FLC has been applied with considerable success in consumer product and industrial 
systems as is described in the literature (Cordon, 2001; Austin, 2000; Layne, 1993). It is suitable for a non-linear control 
system design and it is easy to incorporate the engineering knowledge (Jantzen, 1998). Moreover, the practical 
motivations for its use are that it is extremely easy to understand since it emulates a human control strategy. The 
hardware implementation is quick and easy and finally, the development is cheap. 
 
2. Dynamic Model 
 

There were mainly two vehicle models which were used in this work. The first one was a simple 2 degrees of 
freedom (d.o.f.) which just simulates the longitudinal dynamics, and the other one was an Adams model which 
represents the real vehicle. 

Initially, Fig. (1) shows the diagram of the simple model having as d.o.f., the forward velocity and wheel spin 
velocity. The bellow equation represents its dynamics, where M is body mass, J is the wheel rotational inertia moment, 

Tb and Td are the brake and drive torque at the wheel, tyre
xF  is the longitudinal tyre force, Reff is the effective rolling 

radius, U is the forward vehicle velocity and finally, ω is the wheel spin velocity. The vehicle parameters, which are 
shown in Tab. (1), represent the simplification of the real data. Moreover, the Reff is assumed constant in order to speed 
up the simulations. 

 







−−=

=

eff
tyre
xdb

tyre
x

RFTTJ

FUM

ω&

&

             (1) 

 

jokamoto


                           Proceedings of COBEM 2003                                                                                17th International Congress of Mechanical Engineering
                           COBEM2003 - 0493     Copyright © 2003 by ABCM                                                                       November 10-14, 2003, São Paulo, SP





  

������
������
������
������
������
������
������
������

U

Fx

w

Tb
Td

M

J

 
 
Figure 1. Vehicle mode – 2 d.o.f. . 
 
Table 1 – Vehicle Parameters. 
 

Body mass M 1500 kg 
Wheel rotational inertia moment J 0.5 kgm2 
Effective rolling radius Reff 0.3 m 

 
For its simplicity and less computational expense, the tyre model presented by Athan et al. (1997) was adopted in 

this work. Only the longitudinal dynamics was contemplated by this model which direct relates the vertical force of the 
tyre with its longitudinal force, Eq. (2). 
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Then the slip ratio of the wheel for the longitudinal dynamic, σ , is given by Eq. (3), where ux is the forward speed 

of the wheel. 
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The following equations show coefficient of friction between the road and tyre as a non-linear function of the 

longitudinal slip ratio. For the dry surface, Eq. (4), the peak adhesion is assumed 0.9 at 22% of slip, with slide adhesion 
of 0.729. Then, the wet pavement, Eq. (5), has the peak friction is assumed 0.47 at 8% slip, with slide coefficient of 
0.21. Finally, in the iced ground, Eq. (6), the maximum friction is 0.17 at 15% slip and slide of 0.13. 

 
)26.0))73.17exp(1(07.1(9.0 σσµ −−−××=            (4) 

 
σ).σ)).((.(.µ 60377exp1071470 −−−××=            (5) 
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Finally, a medium sport utility vehicle was modelled in Adams having overall weight around 1500 kg, distance 

between axles of 2.7 m, average semi-track of 0.70 m, front engine, and independent four wheel brake. This model had 
107 d.o.f. and its diagram is shown on Fig.(2).  

 



 

 
Figure 2. Adams’ model. 

 
3. Learning System 

 
3.1. Genetic Learning Automata 

 
The GLA is a synthesis of the Genetic Algorithm (GA) (Goldberg, 1989) and the learning automata (Najin, 1994). 

Howell et al. (2002) presents a detailed discussion of the algorithm. Brandão et al. (2001) have applied the GLA to 
solve the identification problem for vehicle suspension system. 

The fitness function or cost function adopted here has the general form 
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Where rms
ie is the least squared error of the variable ei, which is one of the design variables. Ci is a weight constant 

used in order to pondered the importance of each design variable during the learning process. 
By contrast to the GA, which does not have an inherent stop rule and so it is difficult to decide when to stop it, the 

GLA has an inherent stopping criteria. If all bit positions of the chromosome string for the whole population have 
converged, the system has found its maximum. Besides the inherent criteria, two other stopping criteria were introduced 
to speed up the process as the optimal solution was not a requirement for this problem.  

Firstly, the process stopped when the ratio between the population average fitness and the fittest individual reached 
value greater than (1-ε), where ε was the desired precision. 

 

ε1
individualfittest 

fitness average population −>             (8) 

 
Secondly, if for ten consecutive generations the difference between the actual mean fitness and the previous mean 

fitness kept less than a desired limit ξ, the algorithm assumed that the solution for that specific learning process could 
not be improved anymore or the improvement was too small and halt. 

 
ξ  1)-fitness(imean  - fitness(i)mean <             (9) 

 
3.2. Fuzzy Logic System 

 
The Fuzzy Logic System (FLS) adopted in this work to design the Fuzzy Logic Controller (FLC) for the ABS was 

based on the Mandani Fuzzy Rule-Based System. The basic structure of this system is shown on Fig. (3). The system 
implemented had four main parts, the Fuzzification Interface, the Inference System, the Knowledge Base (KB) and the 
Deffuzzification Interface. The initial phase was the Fuzzification Interface which was responsible for the mapping 
between the real input and the fuzzy sets defined on the standard fuzzy universe and also contained the input scaling 
factor. The final stage was the Deffuzzification Interface, which had a scaling factor as well, was in charge for the 
mapping between the fuzzy universe and the real output domain. The KB stored the available knowledge about the 
problem in a very intuitive way, as IF-THEN rules, and was divided into two parts, the Data Base (BD) and the Rule 
Base (RB). Finally, the Inference System was responsible for averaging the latter rules put into effect by the KB. Plenty 
of different deffuzification methods are available. The process of transforming a fuzzy output of a fuzzy inference 
system into a crisp output applied in this work was the Bisector of area (BOA). This method picks the abscissa of the 
vertical line that divides the area under the curve in two equal halves. 
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Figure 3. Scheme of the Fuzzy Logic System. 
 

3.3. Classifier System 
 
A Classifier System (CS) is defined by Goldberg (1989) as a machine learn system which learns rules in order to 

guide its performance in an arbitrary environment. Any CS is basically compound by three main components - rule and 
message system, reward system and rule generation system. 

The characteristic that distinguishes the CS from other learning mechanisms is the capability to adapt their heuristic 
to changes in demand. A CS can develop trending strategies in a stock management system, in a chemical plant it can 
perform process control (Geyer-Schulz, 1995), and in a vehicle could be used to integrate several intelligent systems, 
such as anti-lock braking system and traction control system. 

A learning CS is a form of machine learning which dispenses with a human expert and attempts to evolve a 
meaningful rule base via environmental feedback and the recombination of existing rules to form new improved rules. 
Like an expert system, all knowledge in a learning CS is coded as production IF-THEN rules. Thus, it is an expert 
system without an expert. 

There are mainly two approaches for this genetics-based machine learning (Goldberg, 1989). The first one, namely 
the Pittsburgh approach, is concentrated on rule bases and needs only a genetic algorithm as learning component. Each 
individual represents a rule base which is evaluated in a simulated environment. The genetic algorithm solves the rule 
base discovery problem by generating a new set of rules bases for the next generation. The second one, namely the 
Michigan approach, is the rule learning family and the Holland classifier system is one example of this family. This 
group has to solve two problems, the first is the apportionment of credits which is the problem of reinforcement, and the 
other one is to discover new useful rules when the existing rules prove inadequate. The Pittsburgh approach was taken 
on to be used in this work. 

 
3.4. Design Methodology 

 
The Genetic Learning Automata Fuzzy Classifier System (GLAFCS) employed the global search capability of the 

GLA to determine FCS rule and data bases that can be intuitively understood by vehicle chassis engineers. Considering 
the scheme presented on Fig. (3), the learning procedure was divided into four parts. Initially the scale factors were set 
based on the vehicle model and the expected values for the input variables. Secondly, making use of standard 
membership functions, a set of rules for the controller was learnt using GLA. Next, the scaling factors (linear and non-
linear) which had been set previously were fine-tuned. Finally, a training section took place in order to verify if the final 
controller had the desired behaviour. 

 
4. Controller Design 

 
In this project, the improvement of the vehicle's stopping distance for different kinds of surfaces was the 

requirement for the design controller. In order to archive this objective, the controller should avoid the wheel lock-up. 
The available variables were the wheel speed, ω , and an estimate forward vehicle speed, U. 

The whole learning process took place for the vehicle model with 2 d.o.f. when was learnt the KB for the ABS. 
Based on the input variables, the wheel slip was estimated using Eq. (3). Figure (4) shows the diagram of the controller 
structure where the wheel slip estimator block is placed just before the fuzzy set. This block has as outputs the wheel 
slip and its discrete-time change of error. 
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Figure 4. Standard modules for ABS fuzzy controller. 



 
 
The input signals for the fuzzy controller are defined in Eq. (10) and Eq. (11), where Gin,i and Pin,i are defined in the 

next sub-section. Equation (12) shows the output signals, Sout, as a function of controller output, S. The gains Gout and 
Pout are also defined on the next sub-section. 

 
1,)(1,

inP
inin signG σσσ ××=            (10) 

 
2,)(2,

inP
inin signG σσσ &&& ××=            (11) 
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outout SSsignGS ××= )(            (12) 
 
During the learning process, the GLA was applied to find the set of rules used on FCS and tune all scaling factors 

for the inputs and outputs of the controllers. The following sub-sections detail each learning step. 
 

4.1. Initial Scalling Factor 
 
Defining the scaling factor was the first step in the learning process. Initially those factors were defined based on 

engineering knowledge about the problem. All the input gains were set to one and the output signal from the controller, 
which was normalised, had to be multiplied by a gain in order to get the correct desired force. Therefore, the gains used 
are 

 
Gin,1 =  1 

Pin,1 =  1 

Gin,2 =  1 

Pin,2 =  1 
Gout =  1/0.8 
Pout =  1 

 
Two saturation functions were applied due to limit the controllers inputs within the fuzzy controller universe. 

Another one with the limits between –1 and +1 was placed just after the controller output owing to the actuator input 
signal limitations. 

 
4.2. Learning Rules 

 
The learning rule process was divided into four steps. Firstly, a set of standard Membership Functions (MF) for 

each controller input and output were defined, Fig. (5), and the genetic learning automata parameters were set to  
 

Max of Generations = 2000 
Population Size = 20 
Crossover Rate = 0.9 
Mutation Rate  = 0.001 
Learning Rate = 0.05 
Keep Population  = 0.20 

 

 
 

Figure 5. Standard Membership Function. (NB – negative big, NS –negative small, ZR – zero, PS –positive small, PB – 
positive big). 



  

 
Secondly, based on engineering knowledge the first and last five rules were set to, respectively, PB and NB, as 

those rules were less likely to be activated. Then, the training set took place. After 2000 generations or the convergence 
is reached, the rules which remained activated for more than 10% of the total time were fixed and a new learning run 
was reinitiated. This procedure went on three times consecutively. After the third run, no additional improvement was 
verified. Therefore, this process was halted and the final set of rules which represents the KB of this problem is shown 
in Tab. (2). The bolded rules were adjusted based on engineering expertise, in order to have a smother response. They 
were changed from ZR to NB and from PS to PB. Both rules were activated less than 1% of the total simulation time. 
So, no significant learn was attributed to those rules. 

 
Table 2 – Body Acceleration Rules. 

 
  Change of error 
  NB NS ZR PS PB 

NB PB PB PB PB PB 
NS PB PB PS PB PB 
ZR NB NS ZR ZR NB 
PS NB NS NS NB NB E

rr
or

 

PB NB NB NB NB NB 
 

4.3. Learning Scaling Factors 
 
As far as the KB was learnt, the controller would be applied to any vehicle if the scaling factors (SF) were correctly 

adjusted. The SF was one of the most sensible parts of the Fuzzy System, thus it had to be carefully adjusted. In fact, it 
was the best way to fine-adjust the controller to a certain vehicle. The GLA with the same parameters from the previous 
sub-section was used to learn the gains and they are shown in the Tab. (3), where x  is the average value and s is the 
standard variance. The output gains were not learnt owing to actuator characteristics dependence, Gout = 0.8-1 and Pout = 
1. 

 
Table 3 – Scaling Factors. 

 
Gain sx ±  
Gin,1 1.9870 ± 0.03230 

Pin,1 1.0338 ± 0.09664 

Gin,2 0.9095 ± 0.00749 

Pin,2 0.1709 ± 0.00748 

 
4.4. Expand to Adams’ Model 

 
The main advantage of the proposed structure was its modularity. As far as the controller for the simple vehicle 

model was designed, it could be applied to each wheel of the vehicle. An ideal scheme is shown on Fig. (6). As the 
GLAFCS is a model free approach, once the KB base was learnt, the modulus can be applied to any similar problem 
without significant performance degradation. Some adaptation is recommended, such as a fine tuning of scaling factor. 
Nevertheless, in this work, the controller learnt for the simplified model was applied straightforward to Adams’ model 
following the scheme shown on Fig. (6). A comparison with another ABS controller will be carried out in Section 6, in 
order to verify whether this approach would lead to reasonable results. Actually, this approach was not searching for the 
optimal controller, but just for a very good one that can be implemented to a huge number of different vehicles. 

 
5. Slide Mode Controller 

 
A slide mode controller (Slotine, 1991) based on the error between the reference and actual wheel slip was 

designed. The reference slip was set to be the optimal slip for each simulation road. The slip error was defined by 
subtracting the actual slip from the desired slip and feed it into Eq. (13). So, the slide mode control would assume 
values equal to +1 or –1 depending on the signal of the error. A first order filter was placed just after the signal output 
so as to prevent excessive chattering. This controller was applied for both models, the 2 d.o.f. and Adams. 

 
)( errorout signS σ=             (13) 
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Figure 6. Ideal scheme for expanding. 
 

6. Comparison 
 
The comparison took place on two levels. The first one, the performance of the 2 d.o.f. vehicle model using the 

slide mode control was compared with the same model equipped with the fuzzy logic controller. The other analysis 
carried out was the robustness of the learnt controller. The controller learnt for the simple model was applied to the 
Adams’ model. 

As the main objective of the ABS was to reduce the stopping distance, and the actuator chattering was a non-
desirable behaviour, the performance index was defined as function of the distance travelled during the braking and the 
power spectrum of the controller output, Eq. (14), where c1 and c2 are weighting constants for those effects. The 
manoeuvre adopted in this study was a full braking from 40 m/s to 10 m/s. The set of simulation was carried out on 
three different surfaces – dry, wet and ice. 

 

distancebraking21 ×+×= ∫ cdt)SPSD(cP.I. out         (14) 

 
As can be seen on Tab. (4), the stopping brake distance for the slide mode controller is always smaller than the 

other one. However, the undesirable chattering behaviour is strongly presented with the slide controller, as shown on 
Fig. (7). Thus, the slide controller has a better performance concerning the braking distance, while generating a lot of 
chattering. The P.I. weights those effects and produces an overall value for each controller. The smaller the P.I., better 
the controller. Indeed, the Fuzzy Logic controller has a slight better over all performance, as presented on Tab. (5). 

 
Table 4 – Braking distance for the 2 d.o.f. model. 

 
Road Surface Slide Mode Fuzzy Logic 

Dry   87.56 m 87.60 m 
Wet 176.62 m 183.13 m 
Ice 452.45 m 467.45 m 

Average 238.88 m 246.06 m 
 

Table 5 – Performance Index for the 2 d.o.f. model. 
 

Road Surface Slide Mode Fuzzy Logic 
Dry 1.50 1.39 
Wet 3.11 2.85 
Ice 7.86 6.71 

Average 4.16 3.65 
 
Figure (8) shows the performance of the SUV modelled in Adams with and without ABS, on dry and wet roads. 

Figures (8.a) and (8.b) show the forward acceleration for the dry and wet surfaces, where is possible to verify in both 
cases that for the same brake pedal demand, the acceleration obtained using the ABS controller is higher than the one 
without the controller, as the controller tries to keep the vehicle within the optimal slip condition. The wheel lock-up 
avoidance is also obtained while using the ABS controller – Fig. (8.b) and (8.c), and the longitudinal wheel slip was 
kept within the target range while the ABS controller was running. 
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Figure 7. Power Spectrum for three different surfaces (dry – top, wet – middle, ice – bottom) and for two controllers 
(slide mode – dotted line, fuzzy logic – solid line). 

 

 
   (a)                 (b) 

 
   (c)                 (d) 

 
   (e)                 (f) 

 
Figure 8. SUV with and without ABS on dry and wet roads. Where a, b and c are the forward acceleration, longitudinal 

slip and brake torque for dry surface. The other three graphs are for the wet surface. (solid – with ABS, dotted 
– without ABS). 



 

The ABS controller acts directly on each servo-valves responsible for the modulation of the brake pressure for each 
individual wheel. As an illustration, the brake torques for the front and rear left brakes are shown in Fig. (8.d) and (8.e). 
On dry surface, the front brake torque with ABS is higher than the other configuration and the rear brake torque are 
almost the same. So, the over all brake torque is higher with ABS. The same behaviour occurs with the wet road 
simulation. 

 
7. Conclusion 

 
The aim of this work was to prove that a model free based strategy as FCS can be applied to automotive systems 

and has major advantage of modularity and extensibility. It was shown that a controller designed for a 2 d.o.f. model 
can work when applied to a 107 d.o.f. model with a reasonable performance. Nevertheless, fine tuning of the input gains 
is recommended in order to optimise the vehicle performance.  

Some comparisons with the slide mode controller was carried out and the FLC had a very good performance, better 
than the other one, even though an optimal controller was not looked for. The main reason for this is that the fuzzy 
controller is a non-linear control with a smoother output, instead of the bang-bang controller which has a crisp output. 

The same approach has been extended to others systems such as roll and yaw controllers, as well as to integration 
controller strategies. 
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