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Abstract. An efficient method to analyze delamination in laminated composite beams, under torsion effects,  is presented. The 
equilibrium equations were derived by Sankar (1991) from the classical shear deformable laminated plate theory (Whitney, 1987). These 
equations are assumed to be satisfied, in an average sense, over the width of the beam. From this assumption results a new set of force 
and moment resultants, which amplify the possibilities for modeling beams under  torsion loading. A new offset beam finite element is 
developed for modeling the problem. Initially, the capability of the new finite element is verified solving the problem of a cantilever beam 
under different end loading conditions. Next, the strain energy release rate for a delaminated specially orthotropic beam under torsion is 
calculated. The delamination is assumed to be in the middle plane of the beam. The results for strain energy release rate are compared 
with the closed form solution for the same problem. The effect of delamination in different interfaces is also studied. Some of the results 
obtained in this research would be useful in explaining delamination propagation in composite beams due to quasi-static impact. 
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1. Introduction  
 

As the use of composite materials in structural applications increases, more is the need for structural analysis. Unlike an 
isotropic beam, laminated composite materials bear coupling among their modes of deformation, which is the major 
obstacle to precisely modeling the mechanical behavior of composite structures. The application of composite materials is 
increasing day by day and in some areas, like aerospace and automobile structures, robotics, marine industries and medical 
devices and prosthesis, the structures use to work under significant torsion loading conditions.       
Among the fracture modes of this kind of material, the occurrence of delamination in free edges has been receiving 
increasing attention from investigators in their effort to understand and prevent delamination in composite structures. The 
reason is the presence of high interlaminar stresses, especially peel stresses, in the neighborhood of a free boundary.  

An efficient method to analyze delamination in laminated composite beams, under torsion effects,  is presented. The 
equations of equilibrium were derived by Sankar (1991) from the classical shear deformable laminated plate theory 
(Whitney, 1987). These equations are assumed to be satisfied in an average sense over the width of the beam. From this 
assumption results a new set of force and moment resultants, which amplify the possibilities for modeling beams under 
different loading conditions, including torsion. The equilibrium equations are derived from the Minimum Potential Energy 
Principle and a new offset beam finite element is developed for modeling the problem. Initially, the capability of the new 
finite element in modeling the problem is verified solving the problem of a cantilever beam under different end loading 
conditions. The results are compared with those from beam theory solutions found in Timoshenko (1970), Reismann and 
Pawlik (1980), Whitney (1987) and Sankar (1991). Next, the strain energy release rate for a delaminated specially 
orthotropic beam under torsion is calculated. The delamination is assumed to be in the middle plane of the beam. The results 
for strain energy release rate are compared with the closed form solution for the same problem. The effect of delamination 
in different interfaces is also studied. Some of the results obtained in this research would be useful in explaining 
delamination propagation in composite beams due to quasi-static impact. 
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2. Beam equations 
 

Considering the laminated beam shown in Fig.(1), the traditional Shear Deformation Theory (Whitney, 1987) with its 
displacements and rotations expanded as a Taylor series in the direction of the width of the beam, with just the first term 
retained, and also that there is no deformation in cross sections normal to this direction, the displacement field can be  
represented in terms of  seven functions of the x coordinate (Sankar,1991): 
 
 
   
 
 
 
Where u0, v0 and w0 are the displacements in the middle plane of the plane in the x, y and z directions, respectively, so, are 
Ψx and Ψy with respect to the rotations around the x and y axes and.   

 
Figure 1. Laminated beam, with force and moment resultants 
 

     The deformation field can be expressed as 
 
     
 where 
 
  
 

 
 
 
 
    
     3. Euilibrium equation 
 
      A new set of force and moment resultants is defined from the integration of the column vector of forces along the width 
of the beam: 
 
 

                                          
 
where b is the width of the beam and the vector of forces F is defined (Whitney, 1987) as 
 
 
 
and the matrix C  is present in the explicit beam constitutive relations (Pinheiro, 1991).  

u(x,y,z) = U(x) + yF(x) + zφ(x) + yzα(x) 

v(x,y,z) = V(x) - zθ(x)                                            (1) 

w(x,y,z) = W(x) + yθ(x) 

 E = E +yÊ                                                                                                                                                                         (2) 

( ) ( )






















+

=























+
−

+
=
































=

'
0

'
0

'

;

'
'

'
'

'

;
_

0

0

θα

α

φ
θα

φ

γ
κ
κ
γ

F

Ê

W

FV
U

E

e

E

xy

xy

xy

x

                                                                                                                       (3) 

== ∫
−

2

2

_

b

b

FdyF ∫
−

=
2

2

__b

b

ECbdyEC     and  ∫
−

==
2

2

^

b

b

ydyFF
^2

2

3
2

^

12
ECbdyyEC

b

b
∫

−








=                                                 (4) 

( ) ( )xxyxxyx
T VMMNNF ,,,,=                                                                                                                               (5) 



 
     The Principle of Minimum Potential Energy  (Trauchert, 1970). is applied in the derivation of the equilibrium equations. 
The total potential energy of the structure (π) is obtained from the sum of the strain energy of the beam (φ) and the potential 
of the external force (χ), and is defined as (Sankar, 1991): 
 
    

According to the Principle of Minimum Potential Energy, 
Where   
 
 
      The potential of the external force ( χ ) is expressed considering only the transverse loading q (x,y) and the 
displacements w (x,y) on the beam surface and, similar to the procedure adopted to define a new set of force resultants in 
Eq. (4), the transverse loading q (x,y) is divided in two parts and defined by: 
 
 
           
Parei aqui. Agora é falar no variacional e nas condições de contorno naturais 
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    According to the Principle of Minimum Potential Energy, 
 
    
      
where δ is the variational operator symbol.  From the application of this Principle results seven Equilibrium Equations and, 
from each one of them, one corresponding natural boundary condition (Pinheiro, 1991). Finally, the new set of force and 
moment resultants can be expressed in terms of seven unknown functions: U, V, W, F, φ, α and θ. Substituting for the 
resultants in terms of displacements results in a system of seven ordinary equations for the displacements.  
 
     4. The finite element solution 
 
      A new finite element has been developed to model the beam problem solving the system of ordinary differential 
equations obtained from the equilibrium equation. This finite element has three nodes and seven degrees of freedom (U, V, 
W, F, φ, α, θ) at each node. The middle node is statically condensed when solving the problem for displacements, but it is 
considered when calculating the strain energy release rate, in order to obtain a more accurate solution. The nodal forces and 
moments for the ith node of the structure are Fx, Fy, Fz, M2, Mx, W and T. A quadratic variation of all seven displacements is 
assumed along the element length. Denoting by X any specific displacement, and by Xi this specific displacement at the ith 
node, the displacement and deformation within the element are defined as 
 
 
 
 
     In the last equation, the terms a1, a2 and a3 are interpolation functions and b1, b2 and b3 their derivatives with respect to X 
direction, all in the form of 
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   where L is the element length and X is the coordinate along the beam axis. 
 
  Using the two above equations, the deformation field within each finite element as a function of the nodal displacement is 
expressed in the form: 
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δπ = δφ + δχ = 0                                                                                                                                                                    (9) 

 X = a1X1 + a2X2 + a3X3 and 

    X�= b1X1 + b2X2 + b3X3                                                                                                                                                                                                                                (10)  
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where   a e a�  are strain-displacements (5x21) matrices and q is the vector of displacements 
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 The element matrix K is defined as  
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where D is the elasticity matrix for composite materias. 
  The final representation of the problem  is in the form: 
 
  F = k q                                                                                                                                                                               (16) 
 
where k is the total stiffness matrix, and F and q are vectors with the nodal forces and displacements, respectively. In the 
present work, the Eq.(16)  is solved using the Gauss Elimination Method (Bathe, 1982). 
 
  5. The strain energy release rate (G) 
 
    The strain energy release rate is calculated using the expression for J-integral. A zero volume path is delineated 
surrounding the crack tip, as shown in Fig. (2) , and the J-integral expressed in terms of the strain energy per unit length (U) 
of each element around the crack as 
 
   J = U(1) + U(4) � U(2) � U(3)                                                                                                                                                 (17) 
  
 Using Eq.(8) and Eq.(13, the strain energy per unit length of the Ith element can be expressed as 
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 In the above equation, the vector q contains the displacements of the nodes of the ith element, including the middle node. 

 
Figure 2. zero-volume path for J-integral 
 
          
 



6. The rigid and gap elements                                                          
                                        
      The possibility of interference between the crack surface in the delaminated region, when the beam is under loading, 
principally under torsion loading, requires that gap elements or rigid elements be placed in appropriate positions in order to 
monitor the contact. 
      Two types of rigid elements are anticipated to be used depending on which side, left or right, of the beam presents the 
interference phenomenon. The Fig. (3) illustrates the interference situation and the rigid elements action. 
    The gap element is placed in the structure to avoid the interference in the delaminated region while the structure is under 
vertical loading.  Both, the rigid element and gap element matrices are assembled in the global stiffness matrix using the 
same procedure adopted to assemble the element stiffness matrices, and their terms can be found in Pinheiro (1991). 

 
Figure 3. Rigid elements: (a) beam under torsion     (b) interference on left side    (c) (b) interference on right side   
  
7. Numerical results                                                          
 
      The capability of the new finite element in modeling the problem is verified solving the problem of a cantilever beam 
under different end loading conditions. The results are compared with those from beam theory solutions found in 
Timoshenko (1970), Reismann and Pawlik (1980), Whitney (1987) and Sankar (1991).  
     In all the numerical tests performed in the present study, the beam is supposed to be made up of material with the 
following properties, which are typical values for high performance graphite/epoxy unidirectional composites: 
 
 Longitudinal Elastic Modulus      (E1):   14.00 GPa 
Transverse Elastic Modulus         (E2):     1.00 GPa 
Shear Modulus            (G12):                  0.53 GPa 
Poison Ratio            (V12):                  0.30 
Poison Ratio            (V23):                           0.55 
 
       Specifically  Fig. (4) shows the agreement among solutions for the angle of twist values along the beam length for a 
cantilever beam (regular elements) with different lengths. The beam is under an unit torque and  was modeled by ten finite 
elements. From these figures, we can see that in the region close to the support the agreement is not good, and probably it 
will require use of larger number of finite elements near the fixed support.  The figure also shows the results with the beam 
modeled using top offset elements, which are elements that had your neutral axis dislocated to the bottom portion of the 
beam. The offset elements are  shear deformable beam finite elements with nodes offset to either the top (bottom elements) 
or bottom side (top elements) and their formulation can be found in (Sankar and Pinheiro ,1990). 



 
Figure 4. Angle of twist along the length (L / h = 100)  
 
     In a second numerical test, a specially orthotropic delaminated cantilever beam is put under torsion loading. Initially, the 
delamination is supposed to be in the middle plane of the beam, and the result in terms of the strain energy release rate is 
compared with the closed-form solution. Then, the delamination is  placed between in different layers along the beam 
thickness, and a study is performed to understand the effect of the delamination position on the strain energy released rate. 
The finite element model used to solve the case of delamination supposed to be in the middle plane of the beam has forty-
six nodes and forty-six elements, as shown in Fig. (5). There are twenty-two regular finite elements modeling the uncracked 
area and twenty-four offset elements (twelve top elements and twelve elements) used for modeling the delaminated region. 

 
 

Figure 5. Delaminated beam:   (a) Under torsion  (b) Separated by parts 
     
 Referring to the strain energy release rate (G) definition (Hellan, 1984), and the condition shown in Fig. (5), it is  obtained 
for the strain energy release rate the value of 2,6367.0 J/m2., while the numerical result for the present case is 2,545.5 J/m2. 
The relative difference between numerical and closed-form solutions is 3.45% and both results can be said being in good 
agreement with each order. 
    When considering delamination position varying along the thickness of the beam, the procedure adopted  is similar to that 
used to calculate the strain energy release rate with the delamination placed in the middle plane, except for the integration 



limits when calculating the stiffness coefficients Aij , Bij and Dij, which are the elasticity coefficients  of the matrix D, for 
composite materials. 
    The Fig. (6) illustrates the adopted model for the case of delamination placed between layers close to the top. 

 

Figure 6.  Delamination close to the top plane 
      
        Figure 7 shows the obtained results for different positions of the delamination along the thickness of the beam.  From 
this figure  we can conclude that the possibility of crack propagation will be increased as the crack position approaches the 
middle plane of the beam. As the crack plane approaches the top or bottom faces of the beam, strain energy release rate 
becomes negative. This could be due to errors in the energy calculations, and can be avoided by having shorter elements 
near the crack tip. 

 
Figure 7.  Strain energy release rate for cantilever beam 

 
      The last numerical test consists in the simulation of a quasi-static impact test in a quasi-isotropic simply supported 
beam. Again, the focus was the effect of the delamination position on the values of the strain energy release rate, and the 
present numerical study can help to interpret experimental results (Knon, 1991). 
     Figure 8 shows the numerical model for representing the simulation of a quasi-static impact test in a quasi-isotropic 
simply supported beam. 



 
Figure 8.  Simply supported beam 

 

       The dimensions of the beam, the length of the delamination, the material and the finite element model are the same as 
the preceding example. A force equal to 100 N is applied to the center of the beam. The finite element model is also shown 
in Figure 8. Two classes of laminates were analyzed in this case, a specially orthotropic laminate and a      [0/45/-45/90]s 
laminate. The delamination was assumed in different positions along the laminate thickness, and the results for each class of 
laminate are showed in Fig.(9).  
 
8. Summary                                                          
 
      The delamination in anisotropic beams was analyzed using a new beam finite element to model the problem. The 
formulation of this new beam finite element is based on a beam theory for laminated beam sin which the equilibrium 
equations are assumed to be satisfied in an average sense over the width of the beam. A new set of force and moment 
resultants for the beam were introduced from this assumption. 
     Two problems of practical interest were solved using this method. One of them was the problem os a specially 
orthotropic delaminated cantilever beam under torsion loading, and the other was the case of a specially orthotropic and a 
quasi- orthotropic simply supported beams under transverse loading.                                                           

 

Figure 9.  Strain energy release rate for simply supported beam 



     In both problems the delamination was assumed to be in different positions along the thickness of the beam, and the 
strain energy release rate for each position was computed. The strain energy release rate was found to have the maximum 
value in the middle plane of the beam, for both cantilever beam under torsion and the simply  supported beams under 
transverse force. Pratically, this indicates that the probability of crack propagation becomes higher as the position of the 
delamination approaches the middle plane of the beam. 
     Similarly to the cantilever beam case, from the present results we can conclude that the possibility of crack propagation 
will be increased as the crack position approaches the middle-plane of the beam. This phenomenon is less pronounced in the 
specially orthotropic beam than in the other beam. Another conclusion is that for a given transverse force, the possibility of 
crack propagation is more in the    [0/45/-45/90]s laminate. These results have an important application in understanding the 
propagation of delamination damage in compasite laminates due to low-velocity impact as well as quasi-static indentation 
types of loading (Kwon, 1991). 
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