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Abstract.  Aeronautical structures are more susceptible to vibrations that can become aggravated by aeroelastic phenomena. Therefore, 
methodologies for suppressing undesired structural responses are important for aeronautics. One of the new technologies involve the 
concept of smart structures which are becoming common. One of the promissing material for use in smart structures are the fluids which 
presents rheological variations.This smart fluids in the presence of electrical or magnetical field change their rheological properties very 
fast allowing applications in control.The modelling the behaviour of this fluids has been tried for many years. Because of the viscoelastic 
nature of this fluid the modelage using Finite Element Method is not trivial. Therefore it will be employed one model developed for a 
sandwich beam with viscoelastic core. This work presents a sandwich beam with a smart fluid core modeled using a Golla-Hughes-
McTavish method and the results compared with analitical models and experimental results available in literature. Future application of 
this model is intended by coupling with an unsteady aerodynamics model, and subsenquent design of control law.  
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1. Introduction 
 

Aeronautical industry are recognized as a huge technology consumer and it has required novel approaches and advances 
in many knowledgement areas. One challenge for aircraft designers has been obtained lighter structures with a low vibration 
susceptibility. The level of this vibration can be aggravated by aeroelastic instabilities which is the coupling among inertia, 
aerodynamic and structural effects (Bisplinghoff et al., 1996). Aeroelastic phenomena like flutter, buffeting, divergence and 
aeroelastic response can lead to a drastic reduction in accuracy and precision of aircraft and may also result in severe 
structural damage. To keep the dynamical responses in acceptable levels many strategies have been carried out, such as: 
new structural materials, passive and active control techniques and advanced design methods. 

In order to suppress undesired vibration many studies have been done using the so-called smart structures. This 
approach integrates active elements and controllers to the structure and it has been mainly related to advances in smart 
materials and computational progress. Smart materials research for smart structures have increased since the 80’s. Shape 
memory alloys, piezoelectric, electrostrictive, magnetostrictive materials, smart fluids and optic fiber have furnished 
reasonable results in structural control, which have motivated aeronautical applications. 

Novel materials suitable for smart structures are under development in a number of research centres. Among them, 
fluids that can change their rheological properties start to grow in importance for active control applications. Such materials 
usually present change in their properties due to action of an external field, such as: electrical or magnetical. It has been 
observed that the changes occur very fast, allowing applications in control. There are two main classes of smart fluids, one 
exploiting the electro-rheological (ER) effect, and the other exploiting the magneto-rheological (MR) effect. It is possible to 
identify three ways to use the smart fluids, flow mode, shear mode and squeeze flow mode (Sims et al., 1999). Although the 
large use of flow mode particularly into semi-active suspensions the shear mode is more indicated to use in smart 
strucutures because its integrating to the structure  

According to Gamota and Filisko (1991) this kind of fluids can be modeled and understood at least qualitatively in 
terms of three regions: a pre-yield, a yieldd and a post yield region. Each region presents diferent behaviour like viscoelastic 
in the pre-yield region, plastic in the post yield region and viscoelastic-plastic in the transition through yield. They also 
purpose a model consisting of a Zener element (Voigt element in series with an elastic element) in series with a Coulomb 
frictional element and a viscous element. Other models have been purposed like Stanway et al (1987) and Kamath and 
Wereley (1997) who created a model composed of parameters which weighting the influence of the viscoelastic and the 
plastic regions according to shear strain velocity. Considering that smart fluids exhibit linear shear behaviour at small strain 
levels, similar to many viscoelastic damping materials, it is believed that modeling approaches developed for 
viscoelastically damped structures are potentially applicable to smart fluids adaptive structures as well (Yalcintas and 
Coulter, 1998). Without any applied field the smart fluids behave like a Newtonian fluids while with a applied field they 
appeared like a Bingham plastic fluids (Yanju et al., 2001). Gamota and Filisko (1991) investigating the dynamic properties 
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of ERFs found that ERFs had various stress responses such as viscoelasticity, linear elasticity, non-linear elasticity, 
plasticity and all of these responses were affected by the electric field strength, strain frequency and stress amplitude. The 
model developed by them includes the viscoelastic and plastic elements resulting in a model involving three degrees of 
freedom. In this work it will be explored the use of the smart fluids in a shear configuration. For that, a sandwich beam with 
a smart fluid core is modelled. First efforts involving this modellage was presented by Yalcintas , Coulter and coworkers 
(Yalcintas and Coulter, 1998, Yalcintas and Dai, 1999, Yalcintas, Coulter and Don, 1995) who based your approach in 
RKU (Ross- Kerwin-Ungar) model. Because of the viscoelastic nature of the smart fluids it seems clear that the modellage 
follow the theory developed for this kind of material. The use of finite elements as a soluction for dynamical equations of 
motion have been increased along the years. Because of the viscoelastic dependence on temperature and frequency some 
theories have been developed like ADF (Anelastic Displacement Field), GHM (Golla-Hughes-McTavish), and others. In 
this study the GHM model which was developed in the mid 80’s will be used.  

The aim of this work is to present a finite element model which includes the damping effects of rheological fluids and 
reproduces the dynamical behaviour viewing further use control. Future application of this model is intended by coupling 
with an unsteady aerodynamics model, and subsenquent design of control law. The results has been compared with 
analitical models and experimental results available in literature. 
 
2. Physical Principles and Mathematical Model 

 
A sandwich beam with a ER/MR fluid core is considered. In this model, the following assumptions are considered (1) 

the beam geometry is constant along the length of the beam, (2) the core material is isotropic and of much greater thickness 
than the face sheets. (3) the shear strain is constant through the core and negligible in the face sheets, (4) the longitudinal 
displacements of the face sheets are uniform through the thickness of the face sheets, (5) the transverse displacement does 
not vary through the thickness of core material and is small relative to the beam length.  

The starting point in modelling the dynamics of the smart beam is to apply the principle of Hamilton, which states that, 
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where T, V and δW are respectively the kinetic, potential (electro-mechanical coupling) energies and the virtual work of 
non-conservative loads. 

The kinetic energy T for a beam can be expressed as: 
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where the subscript indicates the layer, ρ is mass density, w is the transverse displacement along the y axis, and u is the 
translation of the neutral axis along the x-axis direction. 

The potential energy formulation includes the bending in the faces, the shear in the ER material, and the extensional 
energy.  
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where E, G*, γ, I and A are respectively the Young’s modulus of the face sheets, the shear modulus of the ER material, the 
shear strain of the viscoelastic shear layer, the moment of inertia and the area of the cross section. 
 



Kinematics. 
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Figure 1. Sandwich beam. 

 
Axial displacements are assumed to be linear through thickness, whereas transverse one w are supposed constant. The 

geometry and deformation of the beam with ER fluid is show in a Figure 2. The relation for the shear strain is obtained from 
the figure and is based on the axial and transverse displacements.  
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Figure 2. Geometry and deformation of the sandwich beam. 
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where h is the thickness of the layer. 

 
2.1.Finite Element Discretization 

 
The FE method is essentially a process through which a continuum with infinite degrees of freedom can be 

approximated by an assemblage of sub-regions (or elements) each with a specified but now finite number of unknowns. 
Further, each such element interconnects with others in way familiar to engineers dealing with discrete structural or 
electrical assemblies (Zienkiewicz, 1971). The assumed mechanical degrees of freedom {u1 u3 w θ}T are respectively the 
axial and vertical displacements, and the rotation around y-axis.  

For the kth element the corresponding generalized displacement vector {qk} can be assembled, which allows the 
determination of the discrete form of the displacements and rotation at the node i and j, that is:  
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This discretization procedure is achieved by using the shape functions N , , , and , which relates the 

continuum displacements to discrete ones 
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Taking in acount the Lagrange linear shape functions for the axial displacement and a cubic Hermitian functions for the 

transverse displacement, 
 
 

[ 000/000/1
1

LxLxu −=N ]

]

                (11) 
 

[ 00/000/10
3

LxLxu −=N                 (12) 
 


















 −






 −






 −+−= 12300123100

2

2

22

3

3

2

2

L
x

L
x

L
x

L
x

L
xx

L
x

L
x

wN             (13) 

 
 
Rewriting (2), (3), (4), and (5) into variational formulation and taking in account the generalized coordinate show in 

(10) and a relation for γ in (6): 
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The kinetic energy in a variational form can be write as,  
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where M is the mass matrix and the subscripts a and b are related to a axial and transverse moviment respectively. 
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Similarly the potencial energy can be expressed in a variational form like, 
 

( qKKKq sab
TδV ++=δ                   (21) 

 
where K is the stiffness matrix and the subscript s is related to shear energy. 
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2.2. The GHM Model of Material Properties. 

 
 
In the theory of linear viscoelasticity for one dimensional structures the constitutive relation stress-strain could be 

represented by: 
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where G(t) is the relaxation function of the viscoelastic material ( the stress response to a unit step input). This stress 
relaxation represents energy loss from the material, hence damping (Balamurugan and Narayan, 2002). 

The Golla-Hughes McTavish (GHM) method (McTavish and Hughes, 1993 and Golla and Hughes, 1985) represents the 
material modulus as a series of mini oscilator terms (Figure 3) or internal variables. requires the representation of material 
modulus function as a series of (damped) mini-oscillator terms or internal variables. This method was developed for direct 
incorporation into the finite element method. The material complex modulus can be written in the Laplace domain in the 
form. 
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where the factor  corresponds to the equilibrium value of the modulus – the final value of the relaxation function G(t). 
Each mini-oscillator term is a second order rational function involving three positive constants(

∞G

kα , ,kζ̂ kω̂ ). These 
constants govern the shape of the modulus function over the complex s-plane. Depending on the nature of the material 
modulus function and the range of s over which it is to be modeled., any number of mini-oscillator terms may used in the 
GHM expression. 

Consider the elementary mass-spring system with an applied force. With an elastic spring the motion of the system is 
described by the second-order equation of motion. 
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Now, we allow the spring to be viscoelastic, described by relaxation function k(t) 
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Initial conditions have been assumed to be zero for convenience. The material modulus function of k(t) is now modeled 

by a single term GHM expression thus: 
 

)(~)(~
ˆˆˆ2

ˆˆ21)(~
22

2
2 sfsq

ss
ssksqms =













++

+
++

ωωζ
ωζ

α                 (29) 

 



Now, an auxiliary coordinate z is introduced such that, 
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Using this new dissipation coordinate, the Laplace transformed equation of motion may be written as two coupled 

second-order equations: 
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2.3. GHM Viscoelastic Finite Element Matrices. 

 

Multiplying the second equation of the above pair by 2ω̂αk , the resulting system of equations has a symmetric matrix 
second order time-domain realization. 
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This mechanical system has the mechanical representation shown in Figure(3). 
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Figure 3. Mini-oscillator 
 
Since the elastic element stiffness matrix K is usually positive semi definite (one or more eigenvalues representing rigid 

body motion ) the mass matrix in this formulation will not usually be positive definite. To remedy this situation , spectral 
decomposition of the elastic stiffness matrix K is used: 
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Here, Λ is a diagonal matrix of the nonzero (necessarily positive) eigenvalues pκ  of the modulus factored out stiffness 

matrix K. The corresponding orthonormalized eigenvectors rp form the columns of the matrix R, 
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such that 
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To achieve our objective of fewer dissipation coordinates and a positive definite viscoelastic mass matrix, we first 

factor the equilibrium modulus G back into the diagonal eigenvalue matrix Λ , ie, ΛΛ ∞= G a , then let: 
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Substitution thies equation in equation , 
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where the viscoelastic matrices are 
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These element matrices have the symmetry and definiteness properties desired for a standard second order structural 

dynamics model: 
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3. GHM Model Validation. 

 
In this section a validation procedure has been implemented in order to validate the GHM model for a smart damped 

sandwich beam. Comparisons with experimental and numerical results of other researchers are provided to ensure proper 
performance. The first validation procedure has been carried out in terms of verifying the present GHM model in order to 
validate the primary model. For this purpose a free rod in a longitudinal vibration and a cantilever rod both admensionalized 
have been considered according Golla and Hughes (1985). The viscoelastic properties of the rod modeled with 4 mini-
oscillator and the non dimensionalized parameters are presented in Table 1 and the results obtained for a longitudinal 
vibration in Table 2 and for transverse vibration in Table 3. 

 
Table 1. Mini-oscillator non dimensionalized properties. 

 
Mini oscillator α β δ 

1 3.0 × 10-2 4.16 × 10-1 3.16 × 10-2 
2 3.0 × 10-2 4.16 3.16 
3 3.0 × 10-2 4.16 × 101 3.16 × 102 
4 3.0 × 10-2 4.16 × 102 3.16 × 104 

 
 

Table 2. Non dimensionalized frequency and damping for elastic and viscoelastic FEM in a longitudinal vibration. 
 

 Viscoelastic FEM 
Mode Elastic PDE 

(Golla and 
Hughes, 1985) 

Elastic FEM 
(Golla and 

Hughes, 1985) 

Frequency 
(Golla and 

Hughes, 1985) 

Damping 
(Golla and 

Hughes, 1985) 

Frequency 
Present 

Damping 
Present 

1 0 0 0 0 0 0 
2 3.14 3.22 3.33 8.55 × 10-3 3.33 8.55 × 10-3 
3 6.28 6.93 7.19 1.01 × 10-2 7.19 1.01 × 10-2 
4 9.42 11.26 11.73 1.02 × 10-2 11.73 1.02 × 10-2 
5 12.57 13.85 14.46 9.71 × 10-3 14.46 9.71 × 10-3 

 
 

Table 3. Non dimensionalized frequency and damping for elastic and viscoelastic FEM in a transverse vibration. 
 

 Viscoelastic FEM 
Mode Elastic PDE 

(Golla and 
Hughes, 1985) 

Elastic FEM 
(Golla and 

Hughes, 1985) 

Frequency 
(Golla and 

Hughes, 1985) 

Damping 
(Golla and 

Hughes, 1985) 

Frequency 
Present 

Damping 
Present 

1 3.52 3.52 3.63. 8.60 × 10-3 3.63. 8.60 × 10-3 
2 2.20 × 101 2.21 × 101 2.31 × 101 8.27 × 10-3 2.31 × 101 8.27 × 10-3 
3 6.17 × 101 6.22 × 101 6.53 × 101 8.42 × 10-3 6.53 × 101 8.42 × 10-3 
4 1.21 × 102 1.23 × 102 1.30 × 102 7.46 × 10-3 1.30 × 102 7.46 × 10-3 
5 2.00 × 102 2.28 × 102 2.42 × 102 3.94 × 10-3 2.42 × 102 3.94 × 10-3 

 
 



The second validation performed use the experimental results acquired by Lam (1997). In this experiment a free-free 
sandwich beam with aluminum face sheets constrained the core which is admited as ISD 112. Faces sheets have dimensions 
of 0.381m in length, 0.0381 m in wide and 0.0032 m in thick, physical properties are assumed as 70 Gpa for stiffness and 
2700 Kg/m3 for mass density. The core is made from the viscoelastic ISD 112 10 mil (0.381m × 0.0381m × 0.000254m and 
G∞ = 5 × 104) which has the parameter for the GHM model present in Table 4.  

 
Table 4. Parameters for ISD 112 GHM model. 

 
Mini oscillator α̂  ζ̂  ω̂  

1 9.6 73.4 1× 104 
2 99.1 1.1 5 × 104 
3 26.2 3.28 0.5 × 104 

 
The free-free beam is experimented through a impact hammer and a accelerometer. The measurement point is located at 

the center of the beam and the impact occur at the center too. Figure (4) presents a schema for this test. 
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Figure 4. Set up for the experiment (Lam, 1997). 

 
 Using this configuration, Lam (1997) has proceeded an experimental measurement of frequency response functions 

(impact by gravitacional acceleration). The present GHM FE model has been used to predict the frequency response 
function (FRF) in the same conditions as in the Lam (1997) experiment. Figure 5 shows both Lam (1997) and the present 
GHM FE model FRFs, which clearly indicates how good is the present FE model in assessing the dynamic characteristics of 
the smart beam. Such results, reinforces the reliability of the present model in predicting dynamic characteristic of a smart 
beam. Unfortunately the location of the measurement and the excitation point is a node therefore the even modes have been 
lost.  
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Figure 5. FRF produced Lam (1997) experiment (solid line) and calculated with the present FE model (dashed line). 



 
4. Dynamical Characteristics of a Sandwich beam with smart fluids 

 
After validating the GHM model FE with a variety of results, it encorouge to use the smart fluids as a core in a 

sandwich beam. For this purpose the dynamical characteristics of sandwich beam containing smart fluid has been analyzed. 
The experimental data has been performed by Yalcintas and Dai (1999) for a sandwich beam with a ER fluid as a core. The 
test beam has 381 mm in length and 25.4 mm in width and mass density of 2700 Kg.m-3 and stiffness of 70 Gpa. The elastic 
upper and lower plate material is aluminum at a thickness of 0.79 mm and the ER material damping layer has 0.50 mm in 
thickness and mass density of 1700 Kg.m-3 The test has been done using a simple support configuration and a applied 
voltage of 3.5 KV.mm-1. If one of this support is the reference, the actuation is applied at 115 mm away from the reference 
support and the transverse vibration response is measured at 231 mm away. The GHM model has the following parameters: 
α = 1, ζ=5000 , ω = 4, and G∞ = 0.4 106.  
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Figure 6. Experimental setup for ER sandwiched beam (Yalcintas and Dai, 1999). 
 
The results have been obtained using 10 elements and 4 physical degrees and 3 dissipation degrees per node and they 

get good agreement especially if is considered that only one mini-oscillator were carried out. Representing better the 
behaviour of the ER/MR fluid is one of the major challenge in the development of this kind of fluid. Some procedures for 
curve fitting and hence better choices of the GHM parameters are available (Park et al., 1999). 
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Figure 7. FRF produced in Yalcintas and Dai (1999) experiment for a voltage of 3.5 KV.mm-1 (solid line) and calculated 

with the present FE model (dashed line). 
 
5. Conclusions 

 
A GHM finite element model including a ER/MR fluid core has been developed from the viscoelastic theories. The 

main steps in formulating the GHM FE model have been presented and the resulting motion equations has been compared to 
results found in the related literature, presenting good agreement. The validation has been carried out with a non 
dimensionalized model present in the first works. Experimental results extracted from the technical literature have been also 



used, proving that the GHM FE model is capable of adequate dynamic characteristic prediction. The ER/MR model has 
been also tested in terms of its capabilities in simulation the experimental data performed by the previous researchers. The 
results present a good agreement permiting the use of the GHM FE model in ER/MR sandwiched beam. One disadvantage 
of this method is that it increases the number of degrees of freedom because the dissipation modes. It could be solved by the 
use of the reduction methods which are widely available in literature. So it could be concluded that this model is applicable 
for control studies. 
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