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Abstract. The main goal of this work is to present the results of a numerical simulation of a thermal turbulent boundary layer flow, 
developed over a strongly heated flat plate. The algorithm used adopts the Favre averaging, equations of state for density and for 
molecular viscosity, the turbulence model is the classical κ−ε of Jones and Launder (1972). The inner layer is modelled by velocity 
and temperature wall laws. Spacial discretization is done by P1/isoP2 finite element method and temporal discretization is 
implemented using a semi-implicit sequential scheme of finite difference. The coupling pressure-velocity is numerically solved by a 
variation of Uzawa's algorithm. To filter the numerical noises, originated by the symmetric treatment used by Galerkin method to 
the convective fluxes, it is adopted the balancing dissipation method proposed by Huges and Brooks (1979) and Kelly et all (1980). 
The remaining non-linearities, due to laws of wall, are treated by minimal residual method proposed by Fontoura Rodrigues (1991). 
The results were compared with the experimental data of Ng (1981) and with the numerical results obtained by one commercial 
solver (CFX-5.5.1). The Reynolds number of the flow, based on the outlet channel height is 66460 and the temperature of the wall 
was set to 1250K. The comparisson was done by taking velocity and density profiles, velocity and thermal boundary layer  thickness 
and local Stanton number along the wall. Results from the simulation with the proposed methodology were comparatively closer to 
experimental data than those obtained with CFX-5.5.1. 
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1. Introduction 

 
The conferences AFORS-HTTM about complex turbulent flows, in the years 1980 and 1981 at Stanford, from 

which resulted the proposition of using the flow over a backward facing step as a standard case to provide analysis of 
numerical simulation of turbulence and respective models, are important historical marks of the studies of parietal 
turbulence in industry applications. Since then, the main problems encountered are still linked to representing the flow 
that occurs in the inner region of the boundary layer, where the intensity of local gradients and the conjugate effects of 
molecular viscosity and turbulent diffusivity of momentum are very difficult to be treated simultaneously. 

The intensity of the gradients has as main consequence the need of very fine calculation meshes for an efficient 
numerical modeling of the flow in this region. The simultaneous performance of viscous and turbulent effects makes 
unfeasible the employment of turbulence models consecrated by the use, as the κ-ε model of Jones and Launder (1972), 
in the inner region of the boundary layer. As solution for these special characteristics of parietal turbulence two options 
exist: the use of wall laws, capable to represent the dynamic behavior of the inner region of the boundary layer, 
associated to conventional turbulent models and the use of special turbulence models, usually called "low Reynolds 
models", having each one of these solutions advantages and disadvantages. 

The low-Reynolds models have two relevant inconveniences: they don't eliminate the need of very refined meshes 
in the immediate proximity of the walls and they are, in general, models with a small generality degree, because the 
simultaneous representation of the viscous and turbulent effects of the inner region of the boundary layer is done by 
functions set for specific geometries and specific flow conditions. 

The use of laws of the wall, deduced from the governing equations of the boundary layer, associated or not with 
dimensional or scaling analysis, substantially reduce the need of very refined meshes in the near wall region. The 
greatest inconvenience of the wall laws is the numeric instability induced in the numeric algorithms that make use of this 
method. The flow modeling in the proximity of solid contours of the calculation domain, through wall laws, introduces a 
supplemental non-linear behavior the system of equations, caused by the explicit treatment that calculates the boundary 
conditions for the equations of the turbulence model in a given iteration, based on the previous iteration results for the 
velocity field, generating this way the characteristic numerical instability of the explicit iterative schemes. 

In the applications that adopt procedures of temporal integration of the governing equations, which start with a 
random set of initial conditions and converge to a permanent situation of the flow, the instability associated to the use of 
wall laws is amplified, demanding the adoption of special algorithms of numeric stabilization specifically designed for 
this function. 

In a great variety of engineering applications, the turbulent flows are used as means of transportation of thermal 
energy. In these circumstances, the study of the simultaneous existence, of the velocity boundary layer and the 
temperature boundary layer, becomes essential for the numerical modeling of the flow. The consequences of the 
introduction of a new dependent variable, the temperature, in the simulation of the parietal turbulence can be 
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summarized enumerating the needs created by this inclusion: to add to the turbulent governing equations, the mean 
energy equation; to select a convenient model for the correlation tensor among fluctuations of velocity and temperature; 
to correctly evaluate the variations of thermodynamic properties caused by the temperature variation, specifically the 
variations of density and molecular viscosity; to include to the algorithm temperature laws of the wall chosen to be 
implemented.   

With all these considerations, the objective of this work is to test the numerical performance of an algorithm for the 
simulation of parietal dilatable turbulent flows, which happen when the turbulent flow has variations of density caused 
by temperature gradients, originated in the solid walls of the calculation domain.  

The algorithm to be tested, Turbo 2D, is a combination of the numerical simulation methodology using finite 
elements of strongly heated wall flows, proposed by Brun (1988), with an error minimization method, adapted to finite 
elements, for the simulation of turbulent wall flows with non-linear boundary conditions, proposed by Fontoura 
Rodrigues (1990) e (1991). 

By applying Galerkin’s method for finite elements to the calculation of convection dominant flows, numerical 
oscillations without physical meaning can appear. This fact occurs due to the symmetric treatment given by Galerkin’s 
method to a parabolic physic phenomenon, in accordance with Huges and Brooks (1979), which is not symmetric, in this 
case the convection. To lower the tendency of numerical oscillation, a balancing dissipation method, proposed by Huges 
and Brooks (1979) and Kelly et al. (1980) and implemented by Brun (1988), is used in Turbo 2D to prevent this 
occurrence. 

For that, the selected test case was the heated wall flow by Ng (1981), consisting of a fully developed turbulent air 
flow over a wall, with 250 mm of length, heated to 1250 K. The results obtained with the above methodology are 
compared with experimental data of Ng (1981) and with numerical results provided by the commercial code CFX 5.5.1 
from AEA Technology, adopting two different turbulent models: the classic κ-ε model by Jones and Launder (1972), 
with the improvements of Launder and Spalding (1974), using the classic logarithmic wall law and the SST model by 
Menter (1993), which is an improvement to Wilcox’s (1998) κ-ω model, integrated until the wall of the domain. 

  
2. Governing equations 

 
The flow analyzed in the present work is homogeneous, one-phase, at low Mach number, and field forces are not 

significant. This way, the conservation equations of mass, momentum and energy, which describe the phenomenon, are 
represented with the relations: 
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where ρ is the fluid density, t  represents time, u  is the velocity field, p is the total pressure, Cp represents the specific 
heat coefficient at constant pressure, considered constant with temperature in the present work, T is the temperature, 
k is the thermal conductibility and τ  is the shear stress tensor, with its constitutive relation for a newtonian fluid given 
by: 
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In relation (4), µ represents the fluid dynamic viscosity, and in this work, it is considered to be independent of the 

pressure, being a function of temperature only, with the relation: 
 

naT=µ ,            (5) 
 

where a  and n  are material constants, respectively 3,68x10-7 and 0,685 for the air. In order to complete the system of 
equations, the perfect gas relation is considered, given by:  
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where R is a constant for the air. 
 
2.1 Dimensionless governing equations 

 
The process of transforming the governing equations, equations (1), (2), (3) and (6) into a dimensionless form is 

conventional, except the treatment given to the pressure terms, with an initial decomposition defined by: 
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where pm is an instantaneous mean value of the pressure field and pf is a variation, relative to the mean value, function 
of time and position. This procedure allows a separate consideration of variations of pressure, given by the fluid 
dynamics and by thermal variations. The dynamic pressure component, pd, and the thermodynamic pressure, pt, are turn 
into a dimensionless form as below:  
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In relations (8) e (9) the sub-indexes zero characterize, respectively, the reference values for density, velocity and 

pressure. The relation between the dynamic component and the thermodynamic component is given by: 
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where γ is the relation between the specific heat coefficients, at constant pressure and volume, and Ma is the Mach 
number, defined as a function of reference values of velocity and temperature, adopted when turning equations (1), (2), 
(3) e (6) into a dimensionless form. 

For the final representation of the dimensionless governing equations, two simplification hypotheses are taken, 
considering a low Mach number in the flow considered for this work: 

• the viscous dissipation term of the energy equation, equation (3), can be neglected as indicated by the results of 
 Fulachier (1972);  
• the thermodynamic pressure is reduced to a function of time only, as the first term of the second member of 
 equation (10) tends to small values. 
As a consequence, the system of equations, in dimensionless form, is given in the form: 
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In order to simplify the notation adopted, the variables in their dimensionless form have the same representation as 

the dimensional variables. The Reynolds and Prandtl Numbers, represented by Re and Pr respectively, are defined with 
the reference values adopted in this process. 

 
2.2 The turbulence model 
 

As long as computational power today is not capable of representing all turbulent scales of the flow, the 
methodology adopted is a transformation of the system of instantaneous dimensionless governing equations, relations 
(11), (12), (13), (14), into a system of mean equations, obtained using a statistical treatment in the above equations.  



  

In cases where the flow does not show significant variations on density, the Reynolds averaging is used. But when 
the variations in density are significant, the Reynolds averaging becomes inconvenient, due to the high number of 
unknown correlations resulted, leaving the closure problem of the system of governing equations without solution.  

The solution given by Favre (1965), for flows with considerable variation of density, uses the Reynolds averaging 
only for density and pressure, while for velocity and temperature, a mass-weighted averaging is adopted, called the 
Favre averaging (1965). 

The closure of the mean equations is based on the hypothesis of eddy viscosity, work of Boussinesq (1877), adapted 
to variable density flows, by Jones and McGuirk (1979). For the velocity fluctuation correlation tensor, called Reynolds 
Stress, the closure takes the form: 
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where µt is the eddy viscosity, κ is the turbulence kinetic energy, and Ι is the identity tensor. For the velocity and 
temperature fluctuations correlation tensor, interpreted as the turbulent flux of temperature, the proposed closure takes 
the form: 
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where Prt is the turbulent Prandtl number, considered as a constant. In order to equations (15) and (16) turn possible to 
solve the closure problem of the system of mean equations, it is necessary to determine the value of the eddy viscosity 
µt. The form adopted in this work to express the eddy viscosity µt as a function of the turbulence kinetic energy κ and 
the dissipation rate of turbulence kinetic energy ε, is using the Prandtl – Kolmogorov relation: 
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where Cµ  is a constant of value 0,09. With the adoption of relation (17), the κ-ε turbulence model relation imposes the 
necessity of two supplementary transport equations to the system of mean equations, destined to evaluation of variables 
κ and ε.   

Once defined the closure of the system of mean equations, the direction proposed by Brun (1988) produces, as a 
system of governing equations to density variable flows, the following system of equations: 
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The calibration constants of the model are: 
 

09.0=µC ,          44.11 =εC ,          92.12 =εC ,          1=kσ ,          3.1=εσ ,          5.1Pr =t . 

 
2.3 Near wall treatment  

 
The κ-ε turbulence model is incapable of properly representing the laminar sub-layer and the transition regions of 

the turbulent boundary layer. To solve this inconvenience, the solution adopted in this work is the use of wall laws for 
temperature and for velocity, capable of properly representing the flow in the inner region of the turbulent boundary 
layer. For the velocity calculation, the solution employed is the classical wall law logarithmic formulation, which is 
well known and further explanation is unnecessary. 

For the calculation of the temperature, a friction temperature TF is defined as: 
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where n represents the normal direction to the wall. The friction velocity uF is defined as 
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The wall laws adopted in this work for the viscous sub-layer and the logarithmic region, proposed by Cheng and Ng 

(1982), are respectively: 
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where TP represents the temperature on the wall, K' and C' are constants set experimentally by Cheng and Ng (1982) 
respectively equal to 0,8 and 12,5. For numerical implementation, the separation point between the viscous sub-layer 
and the logarithmic region of the turbulent thermal boundary layer is 15.96. 

In the inner region of the turbulent boundary layer, the transport equations for turbulence kinetic energy and its 
dissipation rate are reduced to the equilibrium of production and dissipation. 

  
 
 
 



  

3. Numerical methodology 
 
The numerical solution of the proposed system of governing equations, of a dilatable turbulent flow, has as main 

difficulties: the coupling between all equations; the non-linear behavior resulting of the simultaneous action of 
convective and eddy viscosity terms; the explicit calculations of boundary conditions in the solid boundary; the 
methodology of use the continuity equation as a manner to link the coupling fields of velocity and pressure. 

The solution proposed in the present work suggests a temporal discretization of the system of governing equations 
with a sequential semi-implicit finite difference algorithm proposed by Brun (1988) and a spatial discretization using 
finite elements of the type P1-isoP2. 

 
3.1 Temporal discretization 

 
The system of governing equations is spatially discretized using a first order approximation to the temporal 

derivative, obtained with a sequential semi-implicit finite difference algorithm, with first order truncating error, which 
allows a complete linearization of all equations at each time step. The algorithm proposed by Brun (1988) starts the 
calculation with a known field at an instant n∆t, calculating the momentum, the pressure, the temperature, the density, 
the turbulence kinetic energy and its dissipation rate at an instant (n+1)∆t, where n is a integer number and ∆t is a time 
interval, by means of a sequence of calculations divided in four stages. On the first stage, the temperature field at an 
instant (n+1)∆t is obtained using the relation: 
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On the second stage, the density is obtained at an instant (n+1)∆t, with the equation of state: 
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On the third stage, the fields of momentum and pressure are calculated at instant (n+1)∆t, using a variation of 

Uzawa’s minimum residuals algorithm proposed by Buffat (1981), with the coupled system of equations: 
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On the fourth and last stage, all other values are calculated at instant (n+1)∆t: 
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with the following expression for the production term: 
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and finally, the following values are updated: 
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As the boundary conditions are calculated explicitly, based on values of the instant n∆t to determine the conditions 

for the instant (n+1)∆t, a numerical instability inevitably appears. To eliminate this characteristic of the use of wall 
laws, in applications where temporal variations are considered, the minimization residuals technique proposed by 
Fontoura Rodrigues (1991), that adopts an iterative calculation sequence based on the minimization of the resulting 
error on the evaluation of the friction velocity, defined for a determined iteration i at an instant (n+1)∆t, as: 

 

( ) ( ) ( ) 12*21 ++ −=
n

iFF
n
i uuError ,          (41) 

 
where  the double bars indicate the absolute values of the vectors, the value of (uF

2)* is obtained with the wall laws 
relation, with values of iteration i at instant (n+1)∆t, and the value of (uF

2)i
n+1 is obtained with a numerical relation of 

recurrence, from the error minimization algorithm. 
 

3.2 Spatial discretization 
 
The system of governing equations is discretized in space using triangular finite elements, defined by linear 

interpolation functions. The compatibility conditions between pressure and velocity is preserved using two calculation 
meshes. The pressure field is calculated with a mesh with elements of types P1. The velocity and all other variables are 
calculated using a P1-isoP2 mesh, defined from the P1 mesh by dividing one segment into two, this way, generating 
four P1-isoP2 elements from one P1 element. Figure (1) shows the velocity and pressure meshes used to calculate the 
flow studied in this work. 

 
4. Numerical results 

 
The methodology for simulating the thermal boundary layer, presented in this work, was tested with a fully 

developed air flow simulation, which goes over a heavily heated horizontal wall. The basis for the validation of the 
results is the experimental data of Ng (1981). 

The test case of Ng (1981), the flow is totally developed in a wind tunnel, with temperature of 293 K and free flow 
velocity of 10,7 m/s. This flow passes through the test area, the horizontal plate with 250 mm of length, kept at constant 
temperature of 1250 K. The final part of the development of the velocity profile is done in a channel of square section 
with 100 mm of edge and 500 mm of length. At beginning of the channel, measuring 250 mm of length, a rough cover 
was placed on the inferior wall in order to accelerate the development of the flow. On the second half of the channel, 
the inferior wall is flat, made of identical materials and superficial finish to the test section, which is a natural 
prolongation of the inferior wall of the channel, totally exposed to the atmosphere of the laboratory. The Reynolds 
number of the flow, taking the length of the edge normal to the test section as a characteristic length, is 66460. 

The adopted calculation domain is correspondent to the test section only, constituted by a rectangle measuring 50 
mm of height and 250 mm of length, calculating the area affected by the presence of the wall only, the upper part of the 
test section is not influenced by the wall, having as fields the reference values of the variables, causing no influence on 
the numerical simulation. Figure (1) shows the meshes for pressure and velocity calculations. The code Turbo2D, 
responsible for the implementation of the proposed methodology in the present work, makes use of both pressure and 
velocity meshes shown in figures (1a) and (1b) respectively. The code CFX, used to compare the numerical results, 
makes all calculations with the velocity mesh only, shown in figure (1b). 

The boundary conditions for the three simulations were:  
• for the inlet of the calculation domain, the experimental profiles provided by the work of Ng (1981)   were 

imposed for temperature, velocity, turbulence kinetic energy and its dissipation rate;  
• for the heated wall, the code Turbo2D uses wall laws, for velocity and for temperature, set for a value of y+ 

equal to 50; for the κ-ε model, the code CFX 5.5.1, which also works with wall laws, the value of y+ is limited to 11, for 
the SST model, the code CFX 5.5.1 integrates the equations to the wall, with boundary condition of impermeability and 
temperature of 1250 K;  

• for the upper part of the domain, the area of free flow, pressure and temperature are set to ambient values of the 
laboratory, and for the components of u, κ and ε the same values of the experimental profiles of the inlet of the domain 
were adopted, and for the vertical component of the momentum, null derivative were imposed; 

• for the region of the outlet of the domain, the relative pressure is set to zero and all other variables are set to 
have null derivative for the normal direction to the flow. 



  

 
 

Figure 1: Pressure mesh (a) and velocity mesh (b) with respective numbers of nodes and elements 
 
The numerical simulation was implemented in two steps, following the experimental methodology adopted by Ng 

(1981) to evaluate the effects of temperature on the flow. Initially, an isothermal flow was simulated, that was used as 
reference for the second stage, the simulation of the flow over the strongly heated wall. 

The present work has as objective to test a methodology for simulating the thermal boundary layer. The results 
presented are relating to the thermal boundary simulation, of the flow over  the strongly heated wall, displaying profiles 
of velocity and density at two stations on the wall, at 125 mm and 182 mm, starting from the beginning of the test area, 
and results concerning the fields calculated through all the extension of the wall, represented by the velocity boundary 
layer thickness, the thermal boundary layer thickness and the profile of the local Stanton number along the length of the 
wall.  

   

  
 

Figure 2: Velocity profiles at 125 mm (a) and at 182 mm (b) 
 

In figures (2a) and (2b) the calculated velocity profiles are shown, respectively at 125 mm and 182 mm from the 
starting edge of the plate. The y axis represents the normal distance to the heated wall, in millimeters, and the x axis 
represents the longitudinal component of the velocity, in meters per second. The results in figure (2a) show that the 
profile obtained with Turbo2D is close to the experimental data along all the boundary layer, and the results obtained 
with CFX 5.5.1 do not have the same quality, for both SST and κ-ε models, mainly inside the inner region of the 
boundary layer. To the profile of figure (2b), the results are the same, not showing any significant alteration. It is 
possible to notice by these profiles, that the velocity boundary layer has approximately 20 mm of thickness, in this 
region of the heated plate. 

In figures (3a) and (3b) the obtained profiles of density at stations 125 mm and 182 mm from the starting edge of 
the plate are shown. The y axis represents the normal distance from the wall and the x axis the density, respectively in 
millimeters and in kilograms per cubic meter. The results obtained show that the result obtained with CFX-5 using a κ-ε  
model is closer to experimental data than the other simulations. Turbo2D and CFX with SST provided very close results 
from each other, with little advantage of the SST model. 

In figures (4a) and (4b), are shown respectively the velocity boundary layer thickness and the thermal boundary 
layer thickness, along the length of the heated wall. In these figures, the y axis represents the thickness of the boundary 
layers of velocity and temperature, in millimeters, and the x axis the position along the heated wall. The result of figure 
(4a) shows that the estimated thickness of all velocity boundary layer obtained with the code Turbo2D is far better than 
those obtained with the κ-ε and SST models of CFX 5.5.1. The simulations with the two models of CFX 5.5.1, 
underestimate the velocity boundary layer thickness along the length of the wall. To the thermal boundary layer, results 
obtained with Turbo2D and SST model of CFX 5.5.1 are very good, with better approximation to experimental data 
obtained with Turbo2D. The κ-ε model of CFX 5.5.1 is the worst simulation of the thermal boundary layer thickness.  

 
 



 

  
 

Figure 3: Density profiles at 125 mm (a) and at 182 mm (b) 
 

  
 

Figure 4: Velocity boundary layer thickness (a) and thermal boundary layer thickness (b) along the wall 
 

In figure (5) is shown the corresponding local Stanton number, calculated along the length of the plate with the 
relation recommended by Incropera e DeWitt (1996), by relation (42), where the temperature gradient is taken its non 
dimensional form: 
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In figure (5) the y axis represents the local Stanton number and the x axis represents the length taken from the 

beginning of the heated plate, in millimeters. The best estimative was obtained with Turbo2D, with κ-ε model of CFX 
5.5.1 also showing good results in accordance with the experimental data.  The results obtained with SST model shows 
numerical oscillations with no physical meaning. 
 
5. Conclusions 

 
From the results obtained with the three simulation, the profiles of velocity, the velocity and thermal boundary layer 

thickness and local Stanton Number, it is shown that the best accordance with experimental data was obtained with the 
algorithm proposed in this work and implemented by Turbo2D software.  

The disagreement between the results obtained with the three simulations for the density profiles, indicates that the 
treatment applied to the equation of state used in the simulations is critical. In the three simulations, the ideal gas model 
was used, but the code CFX 5.5.1 evaluates the local values of CP as a function of the temperature, and the code 
Turbo2D takes a constant value of CP. 

The numerical oscillations obtained in the results of the SST model are caused by the instability of the values of 
friction velocity, originated because this model integrates the governing equations up to the wall and the mesh adopted 
for the calculation is not sufficiently refined for these operations. The oscillations obtained with the SST model could be 



  

avoided using a more refined mesh than the one adopted for the comparison, but a greater computational effort would 
be needed. 

 

 
Figure 5 – Local Stanton number along the wall 
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