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Abstract. Tapered beams have many practical uses and their importance is clearly shown, for example, when used as

an efficient weight saving methodology in applications such as aeronautical structures. Structural optimization taking

into account the beams cross-section variation has produced noticeable response improvements. Even so, the calculation

of the system response poses a difficult problem since it may be very time consuming and/or little reliable. Vibrational

power considers all the relevant variables in dynamic systems response, so it was used as a comparison measure here.

In this paper, the tapered leg of a T-beam structure was discretized using three different methods. The first, the

Finite Element Method (FEM) that is widely used with dynamic analysis purposes because of its general character.

Nevertheless, the use of the FEM has many drawbacks like the high computational cost and the loss of confidence at

high frequencies. Additionally, the derivation of mass and stiffness element matrices for tapered Timoshenko beams

is a laborious task, even more for a two-node element. So, in order to overcome this problem, it was considered a

four-node element, which was reduced to a two-node element using the Guyan static condensation. The second, the

Spectral Element Method (SEM) was used to obtain an approximate dynamic stiffness matrix for tapered Timoshenko

beams, but this solution is not reliable for coarse meshes. Finally, the Bessel functions were used to obtain the exact

dynamic stiffness matrix of tapered Euler-Bernoulli beams. The results showed that the Bessel-based method is not

suitable to calculate the frequency response and only predicts properly the resonance frequencies. After comparing the

responses obtained by the three methods above mentioned, the SEM showed the best features, it was at least two times

faster than the FEM and more suitable for discretization than the Bessel-based method.

Keywords: tapered beams, spectral element method, power flow.

1 Introduction

Optimization techniques are used in structural projects that require a great improvement in the system
original configuration and/or performance (Langthjem & Sugiyama, 1999). Structural optimization usually
requires complex computer simulations. So, in order to keep the computing effort at reasonable levels it is
important to take into account all the measures that could be useful to save time processing. This saving could
be achieved, for example, choosing the most suitable discretization method. The size of the matrices related
to the discretized system, and so the computing effort too, will depend strongly on this selection (Coronado-
Matutti, 2003).

In the last years, the development of search techniques based on evolutionary concepts, like the genetic
algorithms for example, required to carry out even millions of simulations in order to choose the best structural
configuration. In this environment, a careful selection of the discretization method is a critical issue and even
a minimum improvement will be very helpful.

As a general purpose, this paper intends to put forward an alternate discretization method to the widely
used Finite Element Method (FEM) that could be useful in some specific applications.

Engineering problems involving dynamic analysis of structures can, in general, be solved using a conventional
methodology like the Finite Element Method (FEM) (Bathe, 1996), which represents the structure as a junction
of simple elements like bars, beams, plates, etc. The approximate response at each point is calculated using in
conjunction shape functions and techniques such as variational methods. Although this procedure is usually
adequate, there are situations in which it becomes inefficient, for example in the dynamic analysis at high
frequencies or when the spatial distribution of the loads is highly non-uniform.

Alternate methodologies to the FEM are the Spectral Element Method (SEM) (Doyle, 1997) and the Bessel-
based method, in which, sometimes, the dynamic stiffness matrices of the structural elements can be exactly
derived from the differential equations of motion. This means that every member in the structure can be
discretized using only one element disregarding the level of the excitation frequency.
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2 The Finite Element Method (FEM)

There are many finite element models of rods and beams which were developed in the last four decades.
Besides, the derivation of mass and stiffness matrices became an easier task after the popularization of symbolic
processing software.

The Timoshenko beam, in special, attracted from the beginning considerable attention due to the difficulty
to derive suitable mass and stiffness matrices and, chiefly, to the existence of drawbacks related to the finite
element formulation, like the shear locking. Moreover, it is hard to define a suitable value for the shear correction
factor, which depends on many variables, among them, in dynamic problems, the excitation frequency.

In this work, the mass and the stiffness matrices of linearly tapered Timoshenko beams are derived. The
traditional approximations, which consider two nodes (four-degrees-of-freedom) (Davis et al, 1972; Dawe, 1978)
lead to unsuitable expressions. To tackle this problem, it was applied the Guyan static condensation (Corn
et al, 1997) to a four node (eight-degrees-of-freedom) beam element (Corn et al, 1997; Rao & Gupta, 2001;
Yokoyama, 1994) to obtain a two node (four-degrees-of-freedom) beam element.

2.1 Timoshenko beam element
Considering a tapered Timoshenko beam as a simplification of a plane stress state, the kinetic energy Tb is

given by

Tb =

∫

∀

1

2
ρ
(
˙̄u(x, y, t)2 + ˙̄v(x, y, t)2

)
d∀

≈ 1

2

∫ L

0

(
ρI(x)K2θ̇(x, t)

2 + ρA(x)v̇(x, t)2
)
dx

(1)

and the elastic energy Ub by

Ub =

∫

∀

1

2
(σ̄xx(x, y, t)ε̄xx(x, y, t) + σ̄xy(x, y, t)γ̄xy(x, y, t)) d∀

≈ 1

2

∫ L

0

(
EI(x)

(
∂θ(x, t)

∂x

)2

+GA(x)K1

(
∂v(x, t)

∂x
− θ(x, t)

)2
)
dx

(2)

ρ is the density, u the longitudinal displacement, v the transversal deflexion, θ the bending rotation, L the beam
total length, A the cross-section area, I the cross-section second moment of area, σxx and εxx the longitudinal
stress and strain respectively, σxy and γxy the shear stress and strain respectively, K1 is the shear correction
factor and K2 is the rotation inertia coefficient. In this work, K1 = π/12 (Mindlin coefficient) and K2 = 1. The
overlined dependent variables refer to the plane stress state.

The potential function Vb due to external applied loads at the beam ends is

Vb = −MLφL +M0φ0 − VLvL + V0v0 = −Mθ|L0 − V v|L0 (3)

The above expressions for Tb, Ub and Vb are used in the Hamilton equation

δ

∫ t2

t1

(Tb − (Ub + Vb)) dt = 0 (4)

Discretizing the beam of length L in n four-node beam elements of length l, Fig. 1.
The nodal variables used are the transversal deflexion v and the bending rotation θ, Fig. 2. Since the element

has eight-degrees-of-freedom, the nodal displacements vector is given by qe = [v1 θ1 v2 θ2 v3 θ3 v4 θ4]
T ,

the subscripts 1 − 4 refer to the local node number. Considering the two nodal variables v and θ as totaly
independent (Yokoyama, 1994)

v(x, t) = [N1(x) N2(x) N3(x) N4(x)][v1 v2 v3 v4]
T (5)

θ(x, t) = [N1(x) N2(x) N3(x) N4(x)][θ1 θ2 θ3 θ4]
T (6)

N1(x) = − (3x−L)(3x−2L)(3x−3L)
6L3 , N2(x) =

3x(3x−2L)(3x−3L)
2L3 , N3(x) = − 3x(3x−L)(3x−3L)

2L3 andN4(x) =
3x(3x−L)(3x−2L)

6L3

are cubic interpolation functions.
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Figure 1. Four-node Timoshenko beam element.
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Figure 2. Variables in the Timoshenko beam.

Applying the Ritz approximation (Reddy, 1984) to the elementary version of the Hamilton equation to
obtain the element mass Me and stiffness Ke matrices

Me =

∫ l

0

NT
θ ρIK2Nθdx+

∫ l

0

NT
v ρANvdx (7)

Ke =

∫ l

0

BT
b EIBbdx+

∫ l

0

BT
s GAK1Bsdx (8)

E is the Young’s modulus, G is the shear modulus, Nv = [N1 0 N2 0 N3 0 N4 0] and Nθ = [0 N1 0 N2

0 N3 0 N4]. The strain due to the bending moment is εb = dθ/dx, likewise the strain due to the shear stress
is εs = ψ = dv/dx − θ. The generalized strain-displacement relationships are εb = Bbq

e and εs = Bsq
e. The

strain-displacement vectors due to the bending moment and the shear stress, respectively, are

Bb =

[
0

dN1

dx
0
dN2

dx
0
dN3

dx
0
dN4

dx

]
(9)

Bs =

[
dN1

dx
−N1

dN2

dx
−N2

dN3

dx
−N3

dN4

dx
−N4

]
(10)

Furthermore, the cross-section area and the cross-section second moment of area are A(x) = A1

(
1 + δx

L

)

and I(x) = I1
(
1 + δx

L

)3
, respectively. The subscript 1 refers to node 1 (Fig. 1).

Me and Ke are [8× 8] element matrices. In order to obtain [4× 4] element matrices, the degrees of freedom
are divided in 2 subsets: masters, related to the end nodes (1 and 4) and slaves, related to the internal nodes
(2 and 3). So, the nodal displacements vector can be rearranged as qe = [qm qs]

T with qm = [v1 θ1 v4 θ4]
T

and qs = [v2 θ2 v3 θ3]
T . Likewise, the element mass and stiffness matrices are

Me =

[
Mmm Mms

MT
ms Mss

]
, Ke =

[
Kmm Kms

KT
ms Kss

]
(11)

The dynamic equilibrium equation for a rearranged Timoshenko beam element is [Ke−ω2Me]qe = Fe, with
Fe = [Fm 0]T , the interelementar forces vector.



Using the Guyan static condensation for the nodal displacements vector (Corn et al, 1997)

qe =

[
Im

−K−1
ss K

T
ms

]

︸ ︷︷ ︸
TG

qm (12)

Im is an [m × m] identity matrix. Then, the dynamic equilibrium equation in the condensed form is [Ke
c −

ω2Me
c]qm = Fm, with

Me
c = TT

GM
eTG, Ke

c = TT
GK

eTG (13)

Me
c and Ke

c are [4 × 4] matrices condensed in the boundary degrees of freedom. So, the element mass and
stiffness matrices used in the numerical simulations are

Me
b =Me

c, Ke
b = Ke

c (14)

3 The Spectral Element Method (SEM)

An efficient way to solve wave propagation problems in complex structures is using a matricial method. The
SEM is very similar to the FEM, but the SEM has as a principal advantage to be formulated in the frequency
domain, this leads to an exact description of the inertia of the distributed mass. So, sometimes it is possible to
obtain spectral elements that describe exactly the structural dynamics. In this work, it will be derived only an
approximate dynamic stiffness matrix for tapered Timoshenko beams.

3.1 Timoshenko beam element
From the Hamilton equation it is possible to obtain the differential equations that describe the displacements

in a Timoshenko beam of constant cross-section (Doyle, 1997)

GA1K1
∂

∂x

(
∂v(x, t)

∂x
− θ(x, t)

)
= ρA1

∂2v(x, t)

∂t2

EI1
∂2θ(x, t)

∂x2
+GA1K1

(
∂v(x, t)

∂x
− θ(x, t)

)
= ρI1K2

∂2θ(x, t)

∂t2

(15)

where v is the transversal deflection, θ is the bending rotation, A1 is the cross-section area, I1 is the second
moment of area, E is the Young’s modulus, G is the shear modulus, ρ is the material density, K1 is the shear
correction factor and K2 is the rotation inertia coefficient.

There are two independent variables v and θ. Assuming the solutions v(x, t) = v0e
−i(kx−ωt) and θ(x, t) =

θ0e
−i(kx−ωt). Then, after substituting them into Eq. 15, it is obtained

[
GA1K1k

2 − ρA1ω
2 −ikGA1K1

ikGA1K1 EI1k
2 +GA1K1 − ρI1K2ω

2

] [
v0
θ0

]
= 0 (16)

which gives the characteristic equation

(
EI1
ρA1

)
k4 −

(
EI1ω

2

GA1K1
+
ρI1K2ω

2

ρA1

)
k2 +

(
ρI1K2ω

4

GA1K1
− ω2

)
= 0 (17)

There are four roots, the wavenumbers ±k1 and ±k2. The transversal deflection v and the bending rotation
θ in the frequency domain are given by

v̂(x) = R1Ãe
−ik1x +R2B̃e

−ik2x −R1C̃e
−ik1(L−x) −R2D̃e

−ik2(L−x)

θ̂(x) = Ãe−ik1x + B̃e−ik2x + C̃e−ik1(L−x) + D̃e−ik2(L−x)
(18)

Ã, B̃, C̃ and D̃ are boundary dependent coefficients. R1 and R2 are amplitude ratios. The displacements v̂(x)

and θ̂(x) can be expressed in function of the nodal displacements v̂1, θ̂1, v̂2 and θ̂2, instead of the coefficients

Ã, B̃, C̃ and D̃



v̂(x) = N̂T
b L̂1Ĝbq̂

e
b, θ̂(x) = N̂T

b Ĝbq̂
e
b (19)

Ĝb is a [4× 4] matrix that relates two vectors, [Ã B̃ C̃ D̃]T = Ĝb [v̂1 θ̂1 v̂2 θ̂2]
T

︸ ︷︷ ︸
q̂e

b

.

Moreover, N̂T
b =

[
e−ik1x e−ik2x e−ik1(L−x) e−ik2(L−x)

]
and L̂1 = diag[R1 R2 −R1 −R2].

The displacements v and θ of a tapered Timoshenko beam element (Fig. 3) can be approximated using the
displacements of a constant cross-section beam (Eq. 19). So, using l instead of L.
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Figure 3. Tapered Timoshenko beam element with two nodes.

The kinetic T̂ e
b and strain Ûe

b energy equations of a Timoshenko beam element in the frequency domain are
(Doyle, 1997)

T̂ e
b = −1

2
ω2

(∫ l

0

ρIK2θ̂
2dx+

∫ l

0

ρAv̂2dx

)

Ûe
b =

1

2

∫ l

0

EI

(
dθ̂

dx

)2

dx+
1

2

∫ l

0

GAK1

(
dv̂

dx
− θ̂
)2

dx

(20)

The potential energy due to the applied nodal forces is V̂ e
b = F̂e,T

b q̂eb, with F̂
e
b = [V̂1 M̂1 V̂2 M̂2]

T .

The total sum of the energies (Ûe = T̂ e
b + Ûe

b ) and the potential energy (V̂ e
b ) are minimized with respect to

the generalized degrees of freedom (q̂eb,i) to obtain the dynamic stiffness matrix K̂D
b

F̂e
b = K̂D

b q̂
e
b, K̂D

b = K̂e
b − ω2M̂e

b (21)

M̂e
b and K̂e

b are square matrices. These matrices and their detailed derivation can be found in Doyle (1997).

4 Bessel-based dynamic stiffness method

When the cross-section of a structural element is not constant, the differential equation that governs its
displacements has variable coefficients. In general, papers about structural elements with variable cross-section
consider only simple elements. For example, the exact solution of the differential equation of a simple bar
with polynomial varying cross-section can be obtained using Bessel functions. When the variation is linear, the
solution can be written in an exponential form, which is similar to the constant cross-section case (Banerjee
& Williams, 1985). The exact solution for Euler-Bernoulli beams can also be expressed in Bessel functions
terms (Banerjee & Williams, 1985; Petersson & Nijman, 1998). Due to its relative simplicity, in this paper only
the Euler-Bernoulli beam will be considered. This fact will not affect the numerical comparison because the
structural elements are not short.

4.1 Euler-Bernoulli beam element
The differential equation of a tapered Euler-Bernoulli beam is

∂2

∂x2

(
EI(x)

∂2v(x, t)

∂x2

)
+ ρA(x)

∂2v(x, t)

∂t2
= 0 (22)

A and I are both the area and the second moment of area of the variable cross-section, respectively



A(x) = A1

(
1 + δ

x

L

)n
, I(x) = I1

(
1 + δ

x

L

)n+2

(23)

After changing variables ξ = 1 + δ x
L

and considering harmonic vibrations v(ξ, t) = v(ξ)sen(ωt)

ξ2
d4v

dξ4
+ 2(n+ 2)ξ

d3v

dξ3
+ (n+ 2)(n+ 1)

d2v

dξ2
− λ4

1

δ4
v = 0 (24)

with λ1 = L 4

√
ρA1ω2

EI1
, which has a solution given by

v(ξ) =
1

φn
(
AJn(φ) +BYn(φ) + CIn(φ) +DKn(φ)

)
(25)

with φ = 2λ1

δ

√
ξ. J , Y , I and K are Bessel functions of the first, second, first modified and second modified

kind, respectively. Using Eq. 25 it is possible to obtain the bending rotation θ, the bending moment M and
the shear force V (Banerjee & Williams, 1985).

The displacement boundary conditions are

At x = 0 (ξ = 1), v = v1 and θ = θ1

At x = L (ξ = 1 + δ), v = v2 and θ = θ2
(26)

Substituting this conditions in the equations for v and θ, it is obtained qeb = BA with qeb = [v1 θ1 v2 θ2]
T

and A = [A B C D]T .
The force and moment boundary conditions are

At x = 0 (ξ = 1), V = V 1 and M = −M1

At x = L (ξ = 1 + δ), V = −V 2 and M =M2
(27)

Substituting this conditions in the equations for V and M , it is obtained F
e

b = CA with F
e

b = [V 1 M1 V 2

M2]
T and A = [A B C D]T .

The relationship between the forces vector and the displacements vector is F
e

b = K
D

b q
e
b, with K

D

b as the
dynamic stiffness matrix of an Euler-Bernoulli beam

K
D

b = CB−1 (28)

5 Numerical example

In order to compare the above discretization methods, it was considered an asymmetric T-beam structure
that has already been used in other works (Ahmida, 2001; Szwerc et al, 2000). The material is Lexanr

(thermoplastic), E = 2.62 × 109 N/m2, ρ = 1240 kg/m3, η = 0.01 and ν = 0.25. To describe the material
dissipation it was used the complex modulus model E∗ = E(1 + iη) (Coronado et al, 2002).

The T-beam structure is shown in Fig. 4. This structure has displacements in the x − y plane only. The
excitation force is harmonic, which can be written in exponential notation as Feiωt, in this work F = 1 N.
Besides, the boundary conditions are free to simulate an aeronautical structure.

In order to compare the FEM, the SEM and the Bessel-based method, the leg 1 will have either constant
or variable cross-section. Conversely, the legs 2 and 3 will always be discretized using the SEM as constant
cross-section elements.

In this sense, it is important to stress that this comparison do not has a definitive character because this
subject is very wide and complex. Moreover, it must be emphasized the general character of the FEM, this fact
will not be so evident in this work due to the specific character of this comparison. So the conclusions cannot
be applied to other cases without a previous study.

Figure 5 shows the power frequency response when all the three legs have constant cross-section. Since the
SEM gives an exact solution for rods and beams of constant cross-section, it is necessary only one element to
discretize each leg. It is shown the power at nodes 1 and 2. The difference between these two quantities is
related to the dissipated energy in the leg 1.

The first comparison is shown in Fig. 6. In this case, the leg 1, of constant cross-section, is discretized using
either the FEM or the SEM with only one element. The difference between the two methods is easily noted
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Figure 4. Asymmetric T-beam structure.

above the third resonance. To improve the results obtained using the FEM, the number of elements is increased
from one to three, Fig. 7. In this case, the two methods show good agreement up to 200 Hz. From these
two figures, it is easily verified that the SEM has some advantage over the FEM since the former requires less
elements to suitably describe a structure with constant cross-section members. This results can be explained by
the fact that at high frequencies the number of modes involved in the response increases, so the discretization
must be refined to account for the higher complexity.

In Fig. 8, the height of the leg 1 cross-section varies linearly until h2 = 2h1. It is compared the SEM
with the Bessel-based method. It is easily noted the poor responses obtained using the SEM with only one
element. Additionally, negative power was obtained at some frequencies, so it was plotted only the absolute
value. Conversely, the Bessel-based method needs only one element to obtain good responses at any frequency.
Using the SEM with three elements, Fig. 9, it is obtained a better correspondence between the two methods.

In Fig. 10, the leg 1 is discretized using the FEM with one element. It can be noted that this method do not
present great variations with respect to the Bessel-based method. Moreover, the FEM do not produce responses
without physical meaning, like negative power, for example. Using the FEM with three elements, Fig. 11, the
response is very similar to the Bessel-based method response.

To verify the correspondence between the SEM and the FEM, it is showed the Fig. 12. Finally, it is
compared the response obtained by the Bessel-based method using two elements with the response obtained
by the SEM using three elements, Fig. 13. The response obtained using the Bessel-based method degenerates
when more than one element is used to discretize the leg 1, probably due to numerical errors calculating the
stiffness matrix.

6 Conclusions

From the figures above discussed, it can be concluded that although the responses obtained, for appropriated
discretizations, using the FEM and the SEM are very similar, the FEM appeared to be more reliable for coarse
meshes. On the other hand, considering the FEM, the elements of the mass and the stiffness matrices obtained
in this work are very complex, this fact produces slowness when the FEM is used, in some cases it was up to
twice slow than the SEM case, for the same discretization level.

The literature is rich with papers about tapered beams. In general, this works compare only either the
elements of the dynamic stiffness matrices or the time response (displacement or velocity). So it is not possible
to see the problems found when the frequency response is calculated.
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section discretized by either the SEM (1 element) or
the FEM (1 element).
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Figure 7. Power at node 1, leg 1 of constant cross-
section discretized by either the SEM (1 element) or
the FEM (3 elements).
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Figure 8. Power at node 1, leg 1 of variable cross-
section (h2 = 2h1) discretized by either the SEM (1
element) or the Bessel-based method (1 element).
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Figure 9. Power at node 1, leg 1 of variable cross-
section (h2 = 2h1) discretized by either the SEM (3
elements) or the Bessel-based method (1 element).
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Figure 10. Power at node 1, leg 1 of variable cross-
section (h2 = 2h1) discretized by either the FEM (1
element) or the Bessel-based method (1 element).
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Figure 11. Power at node 1, leg 1 of variable cross-
section (h2 = 2h1) discretized by either the FEM (3
elements) or the Bessel-based method (1 element).
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Figure 12. Power at node 1, leg 1 of variable cross-
section (h2 = 2h1) discretized by either the SEM (3
elements) or the FEM (3 elements).
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Figure 13. Power at node 1, leg 1 of variable cross-
section (h2 = 2h1) discretized by either the Bessel-
based method (2 elements) or the SEM (3 elements).




