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Abstract: The increase in the bearing loading and the drive for reducing dimensions and component masses in modern combustion 
engines have led to substantial elastic distortion in connecting-rod and main crankshaft bearings. This distortion, in turn, may seriously 
affect lubrication between journal and bearing surfaces. In such applications, the conventional bearing theories, which are based on the 
assumption of perfectly rigid journal and bearings, fail to provide answers to the problem and the coupling of hydrodynamic lubrication 
with the structural elasticity of the bearing – i.e.  an elasto-hydrodynamic analysis – must be sought. The theory of elasto-hydrodynamic 
(EHD) lubrication allows to take the important effects of elastic deformation and pressure-dependent viscosity into consideration in 
bearing analysis. In this paper the Finite Element Method is used in order to simulate the behaviour of thrust bearing pads and achieve the 
pressure distribution acting on the surface of an elastic bearing as well as stress distribution. 
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1. Introduction 
 

Due to the increase in the bearing loading and the presence of lighter components some modern engines experience 
problems on their connecting-rod cap bearings. There is evidence that some bearings suffer severe wear while others were 
damaged by both wear and fatigue of the bearing lining when they are operated at high speeds, probably due to the 
deformation of the inserts and housings (Xu and Crooks, 1997). In such applications, the conventional bearing theory, 
which is based on the assumption of perfectly rigid bodies, fail to provide answers to the problem and the coupling of 
hydrodynamic lubrication with the structural analysis – i.e. an elasto-hydrodynamic analysis – must be sought. The theory 
of elasto-hydrodynamic (EHD) lubrication allows to take the important effect of elastic deformation into consideration in 
bearing analysis. 

Pinkus and Sternlicht (1961) stated that, depending on bearing stiffness and assembly, the deformation on real bearings 
will produce a different film shape, with a drastic change in bearing performance. More recently Xu (1997) stated that the 
assumption of perfectly rigid housings may result in a computed maximum film pressure five times larger than the actual 
one, thus making clear the importance of considering the bearing elastic behaviour in stress analyses. It is also important to 
recall that the pressure distribution in the oil-film and the extension of the bearing zone are also affected by the 
characteristics of the oil. 

To predict the behaviour of any engineering system the analyst has to refer to physical modelling or mathematical 
methods. In the finite element approach the domain is discretized into a number of subregions which are denominated finite 
elements. These elements are considered interconnected at nodal points located at the border of the subregions (elements). 
Trial functions (Burnett, 1987) over each element, usually polynomials, approximate the solution at any point as a function 
of the nodal values. With a sufficiently refined mesh, the assembly of the individual elements can represent a very high 
order solution over the complete region. 

In order to simulate the behaviour of thrust bearings, a two-dimensional, infinitely long, elasto-hydrodynamic model of 
the bearing is adopted (Villar, 2003).Due to the very small oil film thickness, usually of the order of a few microns, the 
solution of the elasto-hydrodynamic problem can only be achieved numerically, by using extremely refined meshes (Boedo, 
2002), and high performance computers (Xu, 1997). 

The basic equations from which the theory of hydrodynamic lubrication is derived are the equations of conservation of 
momentum and the equation of conservation of mass (continuity equation). These two equations, along with a energy 
conservation equation, form a complete set of equations known as the Navier-Stokes equations. When this theory was first 
derived, by Osborne Reynolds, in 1886, it was assumed that bearing and journals, were perfectly rigid. However, perfectly 
rigid bodies do not exist in nature, and some deformation always takes place under load. 

Possibly the most important assumption made by Reynolds was that the film thickness were so thin when compared to 
the bearing radius that all effects due to curvature of the fluid film could be neglected. This enabled him to replace a curved 
bearing with a flat bearing, called plane slider bearing (Shigley, 1972), and use a cartesian frame of reference. 
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2. Plane slider bearing 
 
Plane slider bearings are actually found in fixed-pad thrust bearings, as shown in Fig. (2.1). These bearings consist 

essentially of a runner sliding over a plane fixed-pad, Fig. (2.2). The lubricant is brought into radial grooves and pumped 
into the wedge-shaped space by the motion of the runner. Thick-film, or hydrodynamic, lubrication is obtained if the speed 
of the runner is continuous and sufficiently high, if the lubricant has adequate viscosity, and if it is supplied in sufficient 
quantity. Figure (2.2) also provides a picture of the pressure distribution for perfectly rigid plane thrust bearings under 
conditions of thick-film lubrication. 

 

 
 

Figure 2.1. Fixed-pad thrust bearing (Shigley, 1972). 
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Figure 2.2. Lubricant pressure distribution in a perfectly-rigid plane thrust bearing pad. 
 
The film thickness h in sectional segments of plane thrust bearings, Fig (2.2), can be expressed by 
 

( )
l

x
hhhh 121 −+=                       (1) 

 
where l is the length of the bearing pad. 

 
2.1. Governing equations 
 

For perfectly rigid, aligned bearings, the Reynolds equation, as shown in Eq. (2), is used to represent the behaviour of 
the fluid. The flow is considered as being incompressible, or rather, slow (creeping) fully incompressible (Pinkus and 
Sternlicht, 1961). In Eq.(2) u is the speed of the runner element . 

 

x
hu

z
ph

zx
ph

h ∂
∂

=










∂
∂

∂
∂

+










∂
∂

∂
∂ 6

33

µµ
                    (2) 



 
In the general form of the Reynolds equation, Eq. (2), the second term on the left-hand side is associated with side-

leakage, or flow in the z – direction. In many conventional lubrication problems, side leakage can be neglected and the 
bearing can be assumed to be infinitely long. 

If the side-leakage is neglected, Eq. (2) reduces to  
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which is the classical Reynolds equation for one-dimensional (x-direction) flow. 

 
2.2. Boundary conditions 

 
One of the major difficulties in obtaining satisfactory solutions for bearings lies in defining accurately the boundary 

conditions for the fluid film. Viscous flows depend strongly upon their boundary conditions (White, 1991). Boundary 
conditions for the fluid flow problem are the velocity at the solid boundaries (the no-slip condition) and the pressure at the 
points where it could be prescribed. 

The lubricant can be admitted to a bearing at any point, and the deeper this point lies in the converging film the more 
pronounced is the effect on the resulting pressure distribution. As the lubricant is not always admitted at ambient or 
atmospheric (zero) pressure, a prescribed inlet pressure pp =  is imposed either at the point where the lubricant enters the 
bearing, or at the beginning of the hydrodynamic pressure distribution. 

 
2.3. Analytical solution for perfectly rigid infinitely long bearings 
 

In the solution of the plane slider bearing it is considered that the slider (runner) moves at velocity u and creates a 
combined Couette-Poiseuille flow in the very narrow gap, Fig. (2.2) (White, 1991). The gap decreases from h1 in the 
entrance to h2 at the exit. The closed form solution to the hydrodynamic pressure distribution in a perfectly rigid linearly 
contracting gap with no vertical velocity is expressed by (White, 1991) 
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where h is given by Eq. (1), µ is the viscosity, l is length of the bearing pad, and pa is the pressure at the beginning and at 
the end of the bearing pad, i.e., p1 = p2 = pa. . 
 
2.4. Elasto-hydrodynamic lubrication 
 

The high degree of geometrical and elastic conformity between the runner and the bearing pad enables substantial loads 
to be carried by relatively small oil film pressures, thus making it possible to assume the influence of the pressure on the 
viscosity of the lubricant negligible. Nevertheless, the loads transmitted by the fluid film can lead to substantial deformation 
of the bearing pad and the runner; an effect which can drastically change the geometry of the film. Since the shape of the 
film determines the pressure distribution, it is at once apparent that the solution to the elasto-hydrodynamic problem must 
simultaneously satisfy the governing equation of lubrication and the equations of elasticity. In the solution of elasto-
hydrodynamic problems it has been found useful to solve the inverse problem; that is, to determine the shape of the 
lubricant film which will generate a given pressure distribution. 

Many simplifying assumptions have to be made in order to make the elasto-hydrodynamic lubrication amenable to 
analytical and numerical treatment, either because of incomplete knowledge or because or mathematical difficulties. 
Assumptions such as isoviscous flow - where the viscosity remains constant, smooth surface, static loading, incompressible, 
isothermal and laminar flow may, however, lead to a rather poor approximation. 

 
3. Finite element modelling 
 

During the last two decades much progress has been made toward the analysis of the general fluid flow problems using 
finite element procedures, and at present very complex fluid flows are solved (Bathe, 1996; Zienkiewicz and Taylor, 1991). 
Ansys 5.7 is used to simulate the behaviour of the flow and the fluid-structure interaction. 



In elasto-hydrodynamic analyses neither the fluid behaviour nor the structural equations can be solved independently as 
the structural motions influence and react with the generation of pressures. Here interaction is significant and coupling 
occurs on the interfaces with runner and bearing pad. On the solid boundaries the velocities can be prescribed and the fluid-
structure coupling may be described by computing the displacement due to a previously computed pressure distribution. 
Once the first solution of the fluid problem is obtained, usually for a perfectly rigid system, the pressure distributions at the 
runner and bearing interfaces are substituted for the solution of the structural problem, allowing its independent treatment. 
The computed displacements at the interfaces are then used to proceed in a staggered (Zienkiewicz and Taylor, 1991), 
separated (Brebbia, 1987), weak or sequential (ANSYS, 2002) fashion between fluid and structural solutions, until 
convergence is achieved. 

 
3.1. Mesh-evolution strategy 
 

A mesh-evolution strategy is a set of rules by which meshes are redesigned to arrive at an acceptable mesh. To estimate 
the accuracy and efficiency associated with the first (coarse) mesh and the criteria for mesh redesign, the results obtained 
are compared to the analytical solution to the problems of perfectly rigid bearings (Villar, 2003). It is assumed that  the 
finite element approximation to the solution of the elasto-hydrodynamic problem will yield the exact solution to the 
mathematically posed problem in the limit, as the size h of elements decrease. The influence of the mesh on the numerical 
accuracy is tested by comparing results obtained by grid-size variation to results obtained by using the analytical solutions 
available in the literature for perfectly rigid slipper-pad.  

A sequence of simple regular grids based on the reduction of the grid interval by halving the mesh size is adopted. The 
purpose of this approach is to achieve a monotonically convergent sequence of results (Melosh and Utku, 1987). This 
procedure ensures that each mesh includes the model of its predecessor as a subset. In regular meshes every element is of 
the same type and shape, but not of the same size. Richardson’s extrapolation technique is used to find the value of the 
response corresponding to zero mesh size. In addition to this, some experiments indicate that when more than two analyses 
are required to attain the desired accuracy, extrapolation makes regular meshes more efficient than development of the 
results by any mesh. The conclusion is valid even if the ‘wrong’ element has been chosen to attain the accuracy desired. 
This is indeed the present case due to the fact that no quadratic element type is available for fluid modelling when ANSYS 
5.7 fluid-structure interaction analysis is used. 

Richardson’s extrapolation is used to improve the results obtained by using the finite element method. From the 
solutions obtained by using interpolation functions of order O(hp) it is possible to get an approximation to the exact solution 
of order O(hp+1). Thus, for instance, if we have to approximate solutions u(h) and u(h/2) obtained with meshes of size h and 
h/2, the Richardson’s extrapolation value for u is defined as: 
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Another use of this technique is to get an estimate of the error in the original approximation u(h) or u(h/2). This error 

should be approximately uR - u(h) or uR - u(h/2), respectively. Although one does not known how much more accurate 
approximation uR is, to be conservative, one can always use uR - u(h) or uR - u(h/2) as an indication of the error 
(www.math.ubc.ca/~feldman/m256/richard.pdf, 2001).  

For the cases where the analytical solution to the problem u is known (perfectly rigid bearings), the local error at node i, 
eli, is defined as  

 
Riili uue −=                       (6) 

 
For the definition of the global error eg it is necessary to choose a norm in order to get some measure of the magnitude 

of the error at each node. The vector norm adopted is the discrete Euclidian (quadratic) norm πE 
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where n is the number of nodal points considered. This leads to the definition of the global error as being 
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while the relative error er is expressed by  
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For the cases that do not have analytical solution it is necessary to compare the numeric results to the extrapolated 
values obtained by taking samples of the numerical results in the form shown in Fig. (3.1). 

 

 
 

Figure (3.1). Sampling of results in order to get Richardson Extrapolation 
 

3.2. Modelling description 
 

The bearings analysed are assumed either as being perfectly rigid or as being constituted of elastic parts. The elastic 
bearings consist of a thin layer of an antifriction alloy perfectly bonded to a stiff backing that is supported either by a 
perfectly rigid or by an elastic support. The assumption that there is perfect bonding of the lining to the backing makes it 
possible to consider continuity of displacements in that region. For all models where the elasticity of the bearing part 
(bearing pad) and of the support are considered, it is assumed that there is no deformation in the direction perpendicular to 
the middle cross section of the bearing. The bearing is thus considered as being under a state of plane strain. 

ANSYS 5.7 Velocity-Thermo-Pressure coupled analysis with the sequential coupling method for fluid-structure 
interaction (ANSYS, 2002), is adopted in the present work. Computational Fluid Dynamics FLOTRAN and 
MULTIPHYSICS two-dimensional four-node isoparametric (linear) fluid-thermal FLUID141 and solid PLANE42 with 
extra displacement shapes (subparametric) are the finite element types used to build the models presented here. Fluid 
properties are regarded constant and it is assumed that the lining, the backing, and the support materials are linear elastic 
and isotropic. 

Due to the fact that the ratio of the thickness of the fluid film to other dimensions of the bearing is very small, care is 
taken in order to keep the element aspect ratio (Desai and Abel, 1972) (ratio of the element larger side to the smaller) within 
acceptable limits in order to avoid degradation of the numerical solution. Consequently, as a fine mesh is needed to model 
the thickness of the fluid film, a fine mesh is also needed in the direction of the flow. This makes element sizes sufficiently 
small to keep the error approximation within acceptable bounds. The same is true with respect to the solid model due to the 
fact that the ratio of the thickness of the antifriction lining to other dimensions of the bearing is also very small. 

The aspect ratio of the elements used to model the fluid film in the regions of steep pressure gradient in thrust bearings 
is 1 : 1. This value is, however, conveniently augmented as one gets farther from those regions. Regular meshes are used 
whenever limitations on computer resources do not pose a problem to the numerical solution. When the available computer 
memory is insufficient to carry out the analysis, triangular unstructured meshes are used to connect elements with big 
differences in their aspect ratios. This procedure is adopted in order to limit the number of degrees of freedom of the model.  

Three cases are modelled, which are Case 1 – Perfectly rigid thrust bearing pad; Case 2 – Elastic thrust bearing pad on a 
perfectly rigid support and Case 3 – Elastic thrust bearing pad on elastic support. 

 
Case 1 - Perfectly rigid thrust bearing pad. 

 
The initial mesh used for modelling the lubricant film in a perfectly rigid thrust bearing pad, Fig. (3.2), consists of 1024 

× 3 FLUID141 elements. The initial mesh is refined to 2048 × 4 and to 4096 × 6 elements. 
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Figure (3.2) Configuration used for the analysis of the perfectly rigid thrust bearing pad. 



Case 2 – Elastic thrust bearing pad on a perfectly rigid support. 
 
The initial mesh used to model the coupling between the fluid with the elastic bearing pad consists of 1024 × 3 

FLUID141 elements for the fluid, 1024 × 8 PLANE42 elements for the lining, and 1024 × 18 PLANE42 elements for the 
backing, Fig. (3.3). The initial mesh is then refined to 2048 × 4, 2048 × 12, and 2048 × 22, for the fluid, lining, and backing, 
respectively. Likewise, a third refinement is carried out to 4096 × 6, 4096 × 20, and 4096 × 36, for the fluid, lining, and 
backing, respectively. 
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Figure (3.3). Configuration used for the analysis of the elastic thrust bearing pad on a rigid support. 
 
Case 3 – Elastic thrust bearing pad on elastic support. 

 
The elastic support is modelled by including a thick plate in the thrust bearing model, Fig. (3.4). Triangular PLANE42 

elements are used in the model of the elastic backing in order to allow the use of uniform meshes (with aspect ratio 1 : 1) in 
the elastic support. 
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Figure (3.4). Schematic representation of the mesh configuration used for the analysis of the elastic thrust bearing pad on an 
elastic support. 
 
4. Numerical results 
 

Results of three mesh configurations and their extrapolated values are produced for the thrust bearing analyses. The 
elastic properties of the antifriction lining are assumed to be the material properties of the aluminium alloy AS124A. These 
are modulus of elasticity El = 69.7GPa, Poisson ratio νl = 0.33, and compressive yield strength Sy = 54.0MPa (Joyce, 1999). 
The elastic properties of steel (modulus of elasticity Es = 207GPa, and Poisson ratio νs = 0.29) are taken for the backing and 
for the support. 

Regarding the stress analysis, regions where tensile hoop stress occur at the surface of the bearing indicate where cracks 
are more likely to propagate. The peak of shear stress at the interface between the lining and the backing indicates the point 
within the lining where fatigue cracks are more likely to be nucleated.  

The dimensions used for the thrust bearing models are length of the pad l = 40.0mm; entrance gap h0 = 0.1mm; and exit 
gap hl = 0.03mm (gap contraction ratio hl/h0 = 0.3), Fig. (3.2). The velocity of the runner is assumed to be u = 10m/s; while 
the viscosity µ = 0.625Pa.s corresponds to the use of SAE 50 lubricating oil (White, 1991). It is assumed that the magnitude 
of the oil supply pressure is negligible compared to the generated pressures. In Case 1 the results for a perfectly rigid thrust 
bearing are presented. The elasticity of the bearing pad is considered in Case 2, Fig. (3.3), where the thickness of the 
aluminium lining is assumed to be tl = 0.25mm, and thickness of the steel backing tb = 1.505mm. A 12mm thick external 
plate is included in Case 3, where the influence of the elasticity of the bearing pad and the support is investigated. 

 
Case 1 – Perfectly rigid thrust bearing 
 



The pressure distribution obtained by implementing the analytical solution given by Eq.(4) is presented in Fig. (4.1a) 
and Fig.(4.1b), along with the pressure distributions obtained by using three different finite element mesh configurations. 
The results obtained by using Richardson extrapolation are presented in the Fig. (4.1b), while Tab (1), show the global 
error, and the relative error of the analysis.  
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Figure (4.1). Pressure distribution for numerical results and extrapolated mesh – perfectly rigid thrust bearing 
 
Table 1. Global error and relative error for the pressure distribution – perfectly rigid thrust bearing. 
 

 Global error Relative error 
Sample 1 7.2102 e+07 4.75 % 
Sample 2 3.8146 e+07 1.80 % 
Sample 3 2.4032 e+07 1.60 % 

 
Case 2 – Elastic thrust bearing pad on a perfectly rigid support. 
 

The influence of the elasticity of the bearing pad on the hydrodynamic pressure distribution; of displacement and 
tangential stress at the surface of the bearing are presented in Figs (4.2) to (4.4), while Tab.(2) shows the global error and 
the relative error for the analysis, respectively. The distribution of shear stress within the lining at the interface with the 
backing is presented in Fig (4.3b). The results presented in Fig. (4.2b) allow to confirm that the elasticity of the support has 
a considerable influence on the pressure distribution. 
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Figure (4.2). Pressure distribution on an elastic thrust bearing pad within perfectly rigid support (a) and pressure distribution 
on extrapolated mesh for elastic thrust bearing pad on perfectly rigid support in comparison with perfectly rigid thrust 
bearing (b). 



Table 2. Global error and relative error for the pressure distribution – elastic thrust bearing pad on perfectly rigid support. 
 

 Global error Relative error 
Sample 1 1.1498e+08 6.80 % 
Sample 2 1.0640e+08 4.69 % 
Sample 3 6.1986e+07 4.05 % 
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Figure (4.3). Distribution of vertical displacement at the bearing surface (a) and distribution of shear stress within the lining 
at the interface between the lining and the backing (b) - elastic thrust bearing pad on perfectly rigid support. 
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Figure (4.4). Distribution of the tangential stress at the bearing surface and the positive tangential stress region - elastic 
thrust bearing pad on perfectly rigid support. 
 
Case 3 – Elastic thrust bearing pad on elastic support. 
 

The influence of the elasticity of the bearing pad support on the hydrodynamic pressure distribution; on the distributions 
of vertical displacement and of tangential stress at the surface of the bearing are presented in Figs. (4.5) to (4.7), while Tab. 
(3) shows the global error and the relative error, respectively, of the analysis. The distribution of the shear stress within the 
lining at the interface with the backing is presented in Fig. (4.6b). 

 
Table 3. Global error and relative error for the pressure distribution – elastic thrust bearing pad on elastic support. 
 

 Global error Relative error 
Sample 1 9.0566e+07 6.10 % 
Sample 2 8.3684e+07 4.17 % 
Sample 3 4.8710e+07 3.58 % 
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Figure (4.5). Pressure distribution on an elastic thrust bearing pad within elastic support (a) and pressure distribution on 
extrapolated mesh in comparison with perfectly rigid thrust bearing and perfectly rigid support (b). 
 

0 5 10 15 20 25 30 35 40
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
x 10-3

Bearing Pad Lenght (mm)

V
er
tic
al
 d
is
pla
ce
m
en
t 
(m
m
) 

 Elastic Thrust Bearing Pad on a Elastic Support

 Mesh 1 
 Mesh 2 
 Mesh 3 

(a) 

0 5 10 15 20 25 30 35 40
-7

-6

-5

-4

-3

-2

-1

0
x 107

Bearing Pad lenght (mm)

S
he
ar
 S
tre
ss
 (P
a
) 

 Elastic Thrust Bearing Pad on a Elastic Support

 Mesh 1 
 Mesh 2 
 Mesh 3 

(b) 
 
Figure (4.6). Distribution of vertical displacement at the bearing surface (a) and distribution of shear stress within the lining 
at the interface between the lining and the backing (b) - elastic thrust bearing pad on elastic support. 
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Figure (4.7). Distribution of the tangential stress at the bearing surface and the positive tangential stress region - elastic 
thrust bearing pad on elastic support. 



4. Conclusions 
 

Coupled fluid-structure two-dimensional finite element models are used to investigate the influence of the bearing elasticity on the 
hydrodynamic pressure distribution and on the stress distribution in the bearing. The elasticity of the housing is an important factor to 
consider if one wants to predict the life of the engine bearings with respect to fatigue. The results presented herein indicate that the 
pressure distribution in the lubricant is significantly affected by the elasticity of the bearing. 

Whilst only approximate, the results presented here allow some conclusions of a general character to be drawn. 
i. the distribution of radial displacement along the bearing is directly related to the pressure distribution; 

ii. steep pressure gradients tend to generate tensile tangential stresses at the surface of the bearing due to localised bending; 
iii. the stiffness of the backing has a strong influence on the magnitude of the tensile stresses that develop at the surface of the 
antifriction lining. Thence big-end connecting-rod bearings, particularly the bearing caps of the modern automotive engines, are more 
susceptible to fatigue failure de to the fact that they are generally less rigid than main crankshaft bearings and have to support the full 
loading from the ignition of the cylinders (Xu and Crooks, 1997); 
iv. it can be seen that distinct meshes give rise to different values of the peak pressure pmax and different positions for the 
end of the pressure region. Although this latter difference is not significant when a fine mesh is used, the end position of the 
high pressure region can be markedly different if a coarse mesh is used . 
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