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Abstract:The Immersed Boundary Method is used to model the walls bounding flows in channel and driven cavities. In this method a 
force source term is added to the Navier-Stokes equations, in order to model and guarantee the non-slipping boundary conditions at 
the channel and cavities walls. The Physical Virtual Model (PVM), which is a methodology proposed by the LTCM – FEMEC 
research group, is used to model the force field. This methodology employs the Navier-Stokes equations to compute the interfacial 
force presented in the flow. Preliminarily results for the Couette-Poiseuille flow and driven cavity are presented.  
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1. INTRODUCTION  

 
Engineering problems involving fluids flows in complex geometries are very usual, and the major difficulty arise in 

how to represent the body geometrically complex, its moving walls and its interaction with the fluid.  
The most usual approach is using Neumann and Dirichlet boundaries conditions to represent the body geometry. 

Therefore if the geometry is complex it is a hard and, probably, a very difficult work. This difficulty grows up if the 
body has a moving and deformable geometry. 

Some authors have proposed different methods to treat this kind of problem. Harlow & Welch (1965) proposed the 
Marker and Cell (MAC). In this method the fluid region in on side of the boundary is identified by markers, while the 
other side of the boundary, which can be fluid or solid, is identified by another marker. Peskin (1977) proposed his 
Immersed Boundary Method, in which the interface between fluid and body is represented by a lagrangean mesh, that 
interacts with the flows domain, represented by an eulerian mesh. A force term added to the Navier-Stokes equation is 
in charge to promote the interaction between these meshes. Different ideas have been proposed to calculate this force 
term. 

Peskin’s original idea was based in Hooke’s Law of Elasticity. In this model the lagrangean nodes, Xk, are 
connected by springs of constant k >>1, to a equilibrium point Xe . Goldstein et al. (1993) proposed the Virtual 
Boundary Formulation. In this method the force term is obtained with the sum of inercial forces over a massless body. 
Both methods deals with ad-hoc constants, which must to be fitted for each case.  

Fadlun et al. (2000) used the Navier-Stokes equation to calculate the force term in the first external grid point, using 
its velocity. Therefore it is necessary an algorithm to identify the grid points that must be calculate. 

Lima e Silva et al. (2002) proposed a method named Physical Virtual Model (PVM), in which the force term is 
calculated over a sequence of lagrangean points using the Navier-Stokes equation. Using the same methodology Arruda 
et al (2002) simulated two types of channel flows: Couette, for moderate Re values (100 - 1000) and Couette-Poiseuille, 
for low Re values (10 - 100). 
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In the present work we simulate, using the PVM, two types of flow. Preliminary results are present for Couette-
Poiseuille flow and the driven cavity flow. For the Couette-Poiseuille flow the quantities, velocity, force and friction 
coefficient are presented for Re = 250 (Re is defined upon the mean velocity and the channel highness). It also 
presented velocities profiles and frictions coefficients comparison for different Re numbers. For the driven cavity the 
streamlines, pressure and vorticy fields, and the velocity profiles for Re = 400 and 1000, are presented. 

 
2. MATHEMATICAL FORMULATION 

 
2.1. Governing equations 

 
Incompressible, laminar, isothermal and newtonian fluid flows in a rectangular domain Ω were considered. The 

governing equations are mass conservation and Navier-Stokes. They can be written as: 
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where ν is the kinematic viscosity, and F

r
 is an force term, which will be explained at the next topic.  

 
2.2. Physical virtual model 

 
The force term F

r
, that differs from zero only over the boundary, represents the eulerian force field and it is given 

by: 
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where  are the lagrangean grid points, kxr ( kxf )rr

 is the lagrangean force density e ( )kxx rr
−δ  is a Dirac delta function. 

The lagrangean force is calculated by the Navier-Stokes equation, and it can be expressed by 
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The terms above are named as acceleration force, inertial force, viscous force and pressure force. These terms are 

evaluated over the boundary, using the velocity and pressure fields. It must be noted that over the boundary the eulerian 
velocity V

r
 and the lagrangean velocity V( )xr ( )kxr

r  must be equal to satisfy the non-slip condition.  
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Figure 1. Interpolation scheme for velocity and pressure. 
 
The velocity and pressure spatial derivatives are obtained from the flow quantities by the Eq. (1) and (2). Once obtained 
these quantities are interpolated for the grid points near the interface, as can be seen in Fig. (1). 

The first and second velocity and pressure derivatives are solved using a second order Lagrange polynomial 
approximation, which can be written as 
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Once calculated, the lagrangean force density is distributed to the nearest eulerian grid points, as can be seen in Fig. 

(2), by a distribution function Dij. Then the Eq. (3) takes the form 
 

∑= kijij fDF
rr

.     (13) 
 
Juric (1996) suggested that Dij could be given by  
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where r is (xk - xi)/h or (yk - yi)/h, and h is the eulerian grid size. 
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Figure 2. Force distribution process 
 
3. NUMERICAL METHOD 

 
Equations (1) and (2) were discretized using a central second order finite difference method in space and an Euler 

first order in time for the channel flow. For the driven cavity simulation a second order Runge-Kutta scheme was used 
in time. 

The pressure and velocity coupling was solved by a second order pressure correction method suggested by Armfield 
e Street (1999) and the linear system was solved using the MSI, Modified Strongly Implicit Procedure, suggested by 
Schneider e Zedan (1981).  

 
4. RESULTS 

 
The Immersed Boundary Method, with the Physical Virtual Model, was applied to simulate channel and driven 

cavity flows in order to validate this methodology for static and moving boundaries. The channel and cavity walls were 
modeled using the PVM model. Figure(3) shows the physical models for the flows simulated. 
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Figure 3. Physical model: a) channel; b) cavity. 
 

4.1 Couette-Poiseuille flow 
 
The physical model for the channel can be seen in Fig. (3a). The total domain is represented by the doted lines, 

where the classical boundary conditions are imposed. The domain of interested is virtually composed inside this doted 
domain, and is modeled by a force field appropriately calculated. The Reynolds number is defined as a function of the 
height h of the channel. The channel dimensions are h = 0.5, L = 2h. U is the upper wall velocity and Pi and Po the 
inflow and outflow pressure. 

The Couette-Poiseuille flow was simulated and the force field for a Re = 250 is presented. It is also presented the 
velocity profiles and the friction coefficients as a function of Reynolds number. Comparisons with analytical solutions 
were performed. The flow conditions for this flow are listed in Tab. (1).  



Figure (4) shows the force field. It can be seen that as the upper wall velocity has a different value from the lower 
wall velocity, the force is also different, with a higher force (in modulus) at the lower wall, and a lower force at the 
upper wall. 

 

 
 

Figure 4. Force field - Re 250 
 
Table 1. Couette-Poiseuille flow conditions 

 
Re U ∆P = Po – Pi ν 
100 1,0 - 0,72 0,01 
250 1,0 - 2,16 0,01 
500 1,0 - 4,56 0,01 
750 1,0 - 6,96 0,01 

 
The velocity results are shown in Fig. (5a), and (5b). The maximum velocity occurs above the central line of the 

channel, as could be predicted by the analytical solution. The maximum error is of 1%. It can be noted the pressure 
gradient influence over the flow. As higher is the pressure gradient, more closely to a parabolic shape and less 
asymmetric is the velocity profile. There is a good agreement between the numerical and analytical results. 
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Figure 5.Velocity profiles: a) numerical x analytical velocity – Re = 250; b) as a function of Re number. 

 
The friction coefficient was obtained numerically, and a comparison with the analytical calculation was performed. 

The analytical friction coefficient, f, is defined as 
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where τyx is the shear stress and u  is the mean velocity. The analytical shear stress is given as  
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The numerical shear stress is calculated multiplying the eulerian force per volume over the boundary with the grid 

size dx. It must be noted that in force calculation, the results are for the two sides of the virtual wall. More clearly, there 
are flows at both sides of the channel wall. Thus for the analytical shear stress calculation it must be considered the flow 
in all domain. The friction coefficient is defined as a function of the total shear stress at the wall and the mean velocity 
in the main channel.  

Figure (6a) shows that, in Couette-Poiseuille flow, two friction coefficients are obtained. This occurs because there 
are two different shear stress values, one for the upper wall, due to its movement and the pressure gradient, and the 
other for the lower wall, due only to the pressure gradient.  

It can be noted again in Fig. (6b) the Re number influence over the friction coefficients. As the Re increases, both 
the friction coefficient decreases up to a value close to null. 
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Figure 6. a) Friction coefficients: square - Re 100, delta - Re 250, diamond - Re 500, circle -Re 750.; filled symbols - 

lower wall, not filled - upper wall; b) friction coefficients x Re; square – lower wall; circle – upper wall; filled 
symbols – numerical, not filled - analytical 

 
4.2 Driven Cavity 

 
The driven cavity is an interesting problem for testing and evaluating numerical techniques once it has singularities 

at its lower corners. The physical model for the present simulation consists in a square cavity of unity height and length, 
and it can be seen in Fig. (3). The vertical and lower walls have a null velocity in both x and y directions. The upper 
wall has a unity velocity in x direction and a null velocity in y direction. This problem was simulated for two different 
Reynolds number, 400 and 1000. The whole domain is discretized by a 100x100 regular mesh. The cavity interior is 
composed by a 50x50 regular mesh. Again the Reynolds number is based in the cavity height. The results achieved 
were compared with Ghia et al. (1982) and Hou et al. (1995) ones. 

Important results for the driven cavity problem are the velocity profiles through the cavity geometric center. These 
profiles are present in Fig. (7), where one can see the present result confronted with Ghia et al. (1982) ones. It can be 
seen a good agreement within the results in both cases of Re 400 and 1000. An important fact is that for a higher Re 
value the boundary layer at the wall is thinner than that in the case of lower Re. Another aspect in these profiles is its 
close linearity in the central core, what indicates the developing of an uniform vorticity field.  
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Figure 7. Velocity profiles: a) u-velocity along vertical center line; b)v-velocity along horizontal center line. 
 

The streamlines patterns for both cases are shown in Fig. (8). Although the present results are in good agreement 
with the reference ones, for Re 400 the present simulation did not capture the secondary left vortice. One possible cause 
for this is the coarse grid used inside the cavity (50x50), while Ghia et al (1982) used a 129x129 mesh and Hou et al. 
(1995) used a 256x256 lattice. However it can be seen at this lower corner a different behavior by the streamlines.  
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Figure 8. Streamlines pattern: a) Re 400; b) Re1000. 
 

The primary vortice center for Re 1000 is closer to the cavity geometric center, while for Re 400 primary vortice 
center is close to the right top corner. Excluding the secondary left vortice for Re 400, all the vortices center of the 
present simulation are in good agreement with the reference results, as shown in Tab. (2). 
 
Table 2. Vortice center location 

 
Re  Primary vortice Secondary vortice - left Secondary vortice - right 

  x y x y x y 
400 Ghia et al. 0.5547 0.6055 0.0508 0.0469 0.8906 0.1250 

 Hou et al. 0.5608 0.6078 0.0549 0.0510 0.8902 0.1255 
 Present 0.55 0.60   0.88 0.12 

1000 Ghia et al. 0.5313 0.5625 0.0859 0.0781 0.8594 0.1094 
 Hou et al. 0.5333 0.5647 0.0902 0.0784 0.8667 0.1137 
 Present 0.53 0.58 0.61 0.57 0.84 0.13 



The pressure contours are displayed in Fig. (9). A comparison with the Hou et al (1995) results shows a good 
agreement. It must be noted that the Navier-Stokes equations involve a pressure gradient, so that identical pressure 
values are unexpected. Thus this result is more qualitative rather than quantitative. 
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Figure 9. Pressure contours: a) Re 400; b) Re 1000. 

             
     a)        b) 

 
Figure 10. Vorticity contours: a) Re 400; b) Re 1000. 
 

Figure (10) shows the vorticity contours obtained for the driven cavity problem. One can see that for the higher Re 
value there are more regions of high vorticity gradients, a central core with vorticity close to a constant value and the 
viscous effects are restricted to thin shear layers close to the walls. For the case of Re 400 the region of uniform 
vorticity is smaller and the vorticity gradients are smoother. These results strongly agree with the two references results.  

 
5. CONCLUSIONS 

 
The methodology proposed permits to obtain results that have good agreement with the analytical solutions, for the 

channels flows cases, and with the numerical solution, for the driven cavity case. The errors for the channel simulation 
were in a order of 1%. These results permit to advance in order to implement the methodology for more complex 
geometries, such as channel over cavities and flow chambers with moving boundaries. 
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