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Abstract. Flow of non-Newtonian fluids through contractions and expansions are found in several industrial processes.
In this work, a numerical simulation of non-Newtonian fluid flows through an axysimetric expansion followed by a con-
traction is performed. The numerical solution of conservation equations of mass and momentum is obtained via finite
volume method. In order to model the non-Newtonian behavior of the fluid, it is used the Generalized Newtonian Fluid
constitutive equation, with the Carreau viscosity function. The results obtained show the influence of rheological para-
meters on flow patterns.
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1. Introduction

In this work, the flow of non-Newtonian fluids through an abrupt axisymmetric expansion followed by an abrupt contraction
is analyzed numerically. The mechanical behavior of the non-Newtonian fluid is modeled by the Generalized Newtonian
Liquid constitutive equation (GNL) (Bird et al., 1987):

τττττ = η(γ̇)γ̇̇γ̇γ̇γ̇γ (1)

where τττττ is the extra-stress tensor, γ̇̇γ̇γ̇γ̇γ is the rate-of-deformation tensor, defined as gradv + (gradv)T, v is the velocity
vector and η is the viscosity function, given by the Carreau-Yasuda model:

η − η∞
η0 − η∞

= [1 + (λγ̇)a](n−1)/a (2)

In this equation, η0 is the viscosity at low shear rates, η∞ is the viscosity at high shear rates, λ is a time constant, n is
the power-law exponent, and a is a dimensionless parameter that describes the transition region between the zero-shear-
rate region and the power-law region. Depending on the values of these parameters, this equation can be used to model
viscoplastic materials. Viscoplastic materials are used in many industrial processes, and their main characteristic is the
presence of a yield stress. Above the yield stress the material behaves as a liquid, and, below it, as a solid.

Barnes (1999a, 1999b) performed a comprehensive review about yield stress materials, reviving the argument that
yield stress actually does not exist. He shows, for a large number of materials typically classified as viscoplastics, that
when careful measurements are performed below the “yield stress,” it is found that flow actually takes place. Then, the
viscosity function looks like a bi-viscosity model, with very high viscosity at small shear rates and lower viscosities for
larger shear rates. However, an apparent yield stress can exist as a useful mathematical description of limited data, over a
given range of flow conditions.

Alexandrou et al. (2001) studied numerically the flow of Herschel-Bulkley fluids in a canonical three-dimensional
expansion. The results were obtained for a 2:1 and a 4:1 expansion rate. The effects of Reynolds number and Bingham
number on flow pattern and pressure distribution were investigated. It was observed that a strong interplay between the
Reynolds and Bingham numbers occurs, and they influence the formation and break up of stagnant zones in the corner of
the expansion. Souza Mendes et al. (2000) performed an experimental and numerical analysis of the flow of viscoplastic
fluids through a converging-diverging channel. They observed experimentally a flow pattern transition, for a critical value
of the ratio between the length and the diameter of the central region, indicating a possible material fracture. However, the
viscosity model used in the numerical simulation was not capable to predict this behavior. The flow of Bingham materials
through a 1 × 2 abrupt expansion was analyzed numerically by Vradis and Ötügen (1997). They observed that the
reattachment length increases with Reynolds number and decreases with yield stress. Naccache and Souza Mendes (1997)
studied numerically the flow of Bingham materials through abrupt expansions as a function of Reynolds number, yield
stress and expansion ratio. It was noted that the reattachment length increases with the Reynolds number, decreases with
yield stress and is essentially independent of the expansion ratio. An experimental study of the flow through axisymmetric
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Figure 1: The geometry.

expansions was performed by Pak et al. (1990). This work analyzes the influence of Reynolds number on separation
zones and reattachment length of Newtonian, purely viscous non-Newtonian, and viscoelastic fluids in abrupt axisymmetric
expansions. It was observed that the reattachment length for purely viscous non-Newtonian fluids is almost the same as for
Newtonian fluids. For laminar flows, elasticity decreases the reattachment length, while for turbulent flows the opposite
trend is observed.

2. Analysis

The geometry analyzed is shown in Fig. 1. The flow is laminar, steady and axisymmetric. All the properties are considered
to be constant and viscous dissipation is negligible.

The mass and momentum conservation equations for an incompressible fluid, and using the Generalized Newtonian
Fluid constitutive equation, are given by:

divv = 0 (3)

ρgradv · v = −gradp + div(ηgradv) (4)

where v = ui + vj is the velocity vector, u is the axial velocity component, v is the radial velocity component, p is the
pressure, ρ is the fluid density, and η is the viscosity function, given by the Carreau model (eq. (2), with a = 2). Using
cilindrical coordinates, the governing equations are given bellow.

Mass conservation equation:
1
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Radial momentum conservation equation:
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where x and r are the axial and radial coordinates, respectively.
The boundary conditions are the usual no-slip and impermeability conditions at solid boundaries (u = v = 0),

the symmetry condition at centerline (∂u/∂r = 0 and v = 0), and developed flow at outlet (∂/∂x = 0). At the
inlet, the axial velocity is considered uniform (u = umean and v = 0). The length of upstream and downstream tubes
was chosen to guarantee the flow development at the entrance of the central tube, and at the exit of the downstream tube
(Li = 20Ri).
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Figure 2: Viscosity function for the fluids analyzed.

3. Numerical Solution

The conservation equations of mass and momentum are discretized by the finite volume method described by Patankar
(1980). Staggered velocity components are employed to avoid unrealistic pressure fields. The SIMPLE algorithm (Patankar,
1980) is used, in order to couple the pressure and velocity. The resulting algebraic system is solved by the TDMA line-by-
line algorithm (Patankar, 1980) with the block correction algorithm (Settari and Aziz, 1973) to increase the convergence
rate.

The mesh employed is uniform per zones in the axial and radial directions. To validate the numerical solution,
extensive grid tests were performed. The error obtained for the product of the friction factor and the Reynolds number
(fRe = 8γ̇cD/ū) with respect to the exact value, for a fully developed Newtonian flow at the downstream tube, was
equal to 5%. For the non-Newtonian fluids, a comparison of deformation rates and velocity profiles obtained with the
mesh used and finner meshes was performed, and similar results were obtained (Reis, 2003). Therefore, it was used a
mesh with 300x120 control volumes in the axial and radial directions, respectively.

4. Results and discussions

All the numerical results obtained pertain to low Reynolds numbers (Re = ρv̄Do/ηc < 10−4), where ηc is the viscosity
at the upstream tube wall. The influence of rheological parameters on flow patterns are analyzed for a fixed geometry:
Ro/Ri = 10 and Lo/Ro = 1. Figure 2 shows the viscosity function for all the cases analyzed. The base fluid has the
rheological properties of a Carbopol 676 water solution, given by: η0 = 6.5 × 103 Pa.s, η∞ = 0.5 Pa.s, λ = 0.41
s−1, n = 0.5, and a = 2. In this figure, it can be observed that the viscosity level increases with the parameter η0, and
the shear thinning behavior is delayed when time constant λ decreases. It can be also noted that as the power-law index
n tends to unity, the shear thinning behavior becomes smoother.

Figure 3 shows the streamlines for the flow of the base fluid. It can be observed that a small recirculating zone
appears near the corners. The viscosity function for this fluid is presented in Fig. 4. Higher levels of viscosity correspond
to lower deformation rates. It can be noted that near the core region of the central tube, the deformation rates increase due
to shear components, and the viscosity decreases. At the entrance and exit of the central tube, the deformation rates are
larger due to extension, and the viscosity is also lower than near the wall region. It can also be observed that there is a zone
near the wall of the central tube (radius Ro) where the viscosity reaches its largest value (i.e., η = η0). In this region, the
deformation rates are very low, and the flow is almost stagnant. This behavior could be interpreted as a material fracture,
since the velocities at the core region are much higher than the ones observed near the walls (it’s important to note that
the viscosity model used can not predict a real stagnant flow). This result is similar to the ones obtained numerically and
experimentally by Souza Mendes et al. (2000), where a material fracture is observed experimentally near the core region
of the central tube.

The effect of the power-law exponent on flow pattern can be analyzed with the aid of Figs. 5–8. These figures show
the streamlines and viscosity function for n = 0.25 and n = 0.75. All other rheological parameters are held fixed.



Figure 3: Streamlines. Base Fluid (η0 = 6.5 × 103 Pa.s, η∞ = 0.5 Pa.s, λ = 0.41 s−1, n = 0.5,
and a = 2).

Figure 4: Viscosity function. Base Fluid (η0 = 6.5 × 103 Pa.s, η∞ = 0.5 Pa.s, λ = 0.41 s−1,
n = 0.5, and a = 2).



Figure 5: Streamlines, η0 = 6.5 × 103 Pa.s, η∞ = 0.5 Pa.s, λ = 0.41 s−1, n = 0.25, and a = 2.

Figure 6: Viscosity function, η0 = 6.5 × 103 Pa.s, η∞ = 0.5 Pa.s, λ = 0.41 s−1, n = 0.25, and
a = 2.



Figure 7: Streamlines, η0 = 6.5 × 103 Pa.s, η∞ = 0.5 Pa.s, λ = 0.41 s−1, n = 0.75, and a = 2.

Figure 8: Viscosity function, η0 = 6.5 × 103 Pa.s, η∞ = 0.5 Pa.s, λ = 0.41 s−1, n = 0.75, and
a = 2.



Figure 9: Streamlines, η0 = 6.5 × 103 Pa.s, η∞ = 0.5 Pa.s, λ = 41 s−1, n = 0.5, and a = 2.

Figure 10: Viscosity function, η0 = 6.5 × 103 Pa.s, η∞ = 0.5 Pa.s, λ = 41 s−1, n = 0.5, and
a = 2.



Figure 11: Streamlines, η0 = 6.5 × 103 Pa.s, η∞ = 0.5 Pa.s, λ = 4100 s−1, n = 0.5, and a = 2.

Figure 12: Viscosity function, η0 = 6.5 × 103 Pa.s, η∞ = 0.5 Pa.s, λ = 4100 s−1, n = 0.5, and
a = 2.



Figure 13: Streamlines, η0 = 6.5 × 107 Pa.s, η∞ = 0.5 Pa.s, λ = 0.41 s−1, n = 0.5, and a = 2.

Figure 14: Viscosity function, η0 = 6.5 × 107 Pa.s, η∞ = 0.5 Pa.s, λ = 0.41 s−1, n = 0.5, and
a = 2.



It can be observed that the recirculating zone increases with the power-law exponent n. As n is increased, the viscosity
variation is smoother. Therefore, the viscosity at the core region is larger for larger n’s. It can be also noted that for small
values of n, a plug flow region (a region with the largest value of viscosity, or a region with almost no deformation) appears
at the center of core region and at the centerline of the upstream and downstream tubes. This behavior is characteristic
of viscoplastic materials, and is expected for viscosity functions with low values of n, where the Carreau model can be
viewed as a bi-viscosity model.

Figs. 9–12 show the results obtained for λ = 41 s−1 and 4100 s−1. All other parameters are equal to the ones
of the base fluid. It can be observed that as λ is increased, the recirculating zones tends to disappear and the deformation
rates increase near the central tube walls, leading to lower levels of viscosity. In these cases, it seems that the material
fracture doesn’t occur, since the velocities at the core region and near the wall of the central tube are of the same order of
magnitude.

Finally, Figs. 13 and 14 show the streamlines and viscosity function for a fluid with a much higher value of η0

(η0 = 6.5 × 107 Pa.s) than the base fluid (η0 = 6.5 × 103 Pa.s). The qualitative behaviors are similar to the the
ones obtained for the base fluid, as expected, because the only influence of η0 on the viscosity function is to increase the
viscosity levels.

5. Final Remarks

In this paper, a numerical simulation of non-Newtonian flows through an axisymmetric expansion followed by a contraction
was performed. The governing equations of mass and momentum were solved via a finite-volume technique. The
Generalized Newtonian Fluid constitutive equation and the Carreau viscosity function were used to model the Non-
Newtonian fluid behavior.

Numerical results of velocity, viscosity and pressure fields were obtained. The effects of rheological parameters
on flow pattern were investigated. It was observed that η0 has no effect on the flow pattern, and that recirculating zones
near the corners increase with the power-law exponent and decrease with the time constant λ. It was also noted a flow
transition, as the time constant λ is increased. For lower vaues of λ, a material fracture seems to appear, near the core
region of the central tube. This behavior can have strong effects in predicting pressure drop through these flows.
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