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Abstract. External incompressible flows at high Reynolds numbers around bluff bodies are characterized by flow separation and
the development of a Von Karman-type periodic wake. Many attempts to numerically simulate most of the flow details have been
reported in the literature, and a variety of both mesh-based and mesh-free methods have been used. In this paper we use a mesh-
free two-dimensional discrete vortex method to calculate the flow around a circular cylinder. The dynamics of the body wake is
computed using the convection-diffusion splitting algorithm, where the diffusion process is simulated using the random walk
method, and the convection process is carried out with a Lagrangian second-order time-marching scheme. Lamb vortices are
generated along the cylinder surface, whose strengths are determined to ensure that the no-slip condition is satisfied and that
circulation is conserved. Two methodologies are used to impose the impermeability condition: a source panel method, so that
mass conservation is explicitly enforced, and the circle theorem. Results for the aerodynamic forces and pressure distribution
obtained with the two methodologies are compared to each other and to other results available in the literature.
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1. Introduction

The Vortex Method has been extensively used over the last decades to study flows with regions of concentrated
vorticity, such as separated flows around bluff bodies. Alternatively to the classical mesh-based (Eulerian) methods, all
the different versions of the vortex method have been developed within either a mesh-free (Lagrangian) framework, or a
hybrid (Eulerian-Lagrangian) framework. In the first case, purely Lagrangian techniques are adopted for the transport of
vorticity, and no mesh is required (Kamemoto, 1994); in the second case, part of the calculation is carried out on a
mesh, and part is performed according to a Lagrangian description (Smith and Stansby, 1988). Either framework
presents advantages and disadvantages over the other, and the choice of one over the other depends on many factors,
mainly the Reynolds number and the flow geometry. In the particular case of two-dimensional, unsteady,
incompressible and high Reynolds number flows around bluff bodies, mesh-free (Lagrangian) vortex methods provide a
suitable framework, the main reasons being: the absence of a mesh avoids stability problems of explicit schemes (or
cumbersome implementation of implicit schemes) and mesh refinement problems in regions of high rates of strain; all
the calculation is restricted to the rotational flow regions, and no explicit choice of the outer boundaries is needed a
priori; no boundary condition is required at the downstream end of the flow domain. However, in mesh-free vortex
methods the number of operations at each time step, which is governed by the convective step, is proportional to the
square of the number of vortices present in the flow during the time step. This may lead to very large CPU times if a
long-time solution is sought.

In this paper we compare two versions of a vortex method implementation to simulate the two-dimensional,
incompressible, unsteady flow around a circular cylinder at a high Reynolds number: one based on the circle theorem,
and the other based on the panel method. In the first algorithm, vortices with a Lamb core are generated along the
cylinder surface. The application of the circle theorem imposes exactly the impermeability condition on the cylinder
surface. A linear system of algebraic equations for the unknown vortex strengths is formed in order to explicitly ensure
that the no-slip condition is satisfied and that circulation is conserved; this system is solved using the Singular Value
Decomposition Method. The dynamics of the vorticity in the body wake is computed using the convection-diffusion
splitting algorithm, where convection is carried out with a Lagrangian second-order Adams-Bashforth time-marching
scheme and diffusion is simulated using the random walk method. In the second algorithm, the impermeability
condition on the cylinder surface is imposed using the panel method with a constant strength source distribution on each
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panel. A linear system of algebraic equations for the unknown vortex and source strengths is formed in order to
explicitly ensure that the no-slip and the no-penetration conditions are satisfied and that circulation and mass are
conserved; this system is also solved using the Singular Value Decomposition Method.

In the Circle Theorem Algorithm (CTA), the (virtual) image vortices which are present inside the circular cylinder
resulting from the application of the circle theorem doubles the number of vortices in the flow. On one hand, this fact
slows down the algorithm. On the other hand, the circle theorem guaranties that the impermeability condition is
satisfied exactly along the entire cylinder surface (Mustto et al., 1998). With this implementation, the only way a
different body geometry other than circular can be implemented is through a conformal mapping. Carreiro and Bodstein
(2002) use this methodology to carry out vortex-method simulations for high Reynolds-number flows around elliptic
cylinders.

In the Panel Method Algorithm (PMA), the potential flow due to the presence of the body is calculated using the
panel method with constant strength source distribution. The panel distribution forms a closed polygon with a shape that
approximates, as nearly as possible, the actual shape of the bluff body, in our case, the circular cylinder. The
impermeability and the no-slip boundary conditions are imposed in the control points of the panels. This
implementation leads to smaller CPU times and a large variety of body shapes can be analyzed, but the impermeability
condition is satisfied only at the control points of the panels (Moran, 1984), differently from the CTA.

Our objective is to compare the results obtained with both algorithms to each other and to other results available in
the literature. The basic equations that govern the problem under investigation are presented in the next section,
followed by the numerical methods and the algorithms of both implementations, the CTA and the PMA. Results are
then presented and discussed. The last section summarizes the conclusions.

2. MATHEMATICAL FORMULATION

2.1. The Flow Around a Circular Cylinder

We begin our analysis considering the flow around a circular cylinder of radius a, immersed in an unbounded
region with a uniform flow and freestream speed U (Fig. 1). We assume the flow to be incompressible and two-
dimensional, and the fluid to be newtonian with constant kinematic viscosity ν. The unsteady flow that develops
originates from the separation that occurs on the cylinder surface, which generates an oscillatory wake downstream of
the body. This flow is governed by the continuity and the Navier-Stokes equations, which can be written in the form

0=⋅∇ u ,     (1)
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In the equations above u is the velocity vector field, p is the pressure, and Re ≡ 2Ua/ν  is the Reynolds number
based on the cylinder diameter 2a. All the quantities in the Eqs. (1), (2) and the equations below are non-
dimensionalized by U and a.
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Figure 1. Flow around a circular cylinder.

For all the cases studied, the flow is started impulsively from rest. The impermeability and the no-slip boundary
conditions on the surface of the cylinder can be expressed as

0u n =⋅≡ nu ,  at 1r = ,     (3)

0u t =⋅≡ tu ,   at 1r = ,     (4)

where n and t are unit vectors normal and tangential to the cylinder surface, respectively. At infinity we require that



1→u ,  at infinity.     (5)

The dynamics of the fluid motion, governed by the boundary-value problem (1)-(5), can be studied in a more
convenient way if we take the curl of Eq. (2) to obtain the vorticity equation. For a 2-D flow this equation is scalar, and
it can be written as

ω∇=ω∇⋅+
∂
∂ω 2

Re
1

t
u ,     (6)

where ω is the only non-zero component of the vorticity vector (in a direction normal to the plane of the flow).
In our model, a cloud of Nv discrete point vortices, each of constant strength Γk, represents the flow vorticity. In

CTA, we use the circle theorem (Milne-Thompson, 1955) to combine this point-vortex representation with a uniform
flow and a dipole to construct a flow field such that Eqs. (1), (3) and (5) are automatically satisfied. Thus, a suitable
mathematical expression for the velocity field in the complex z-plane, where z = x + iy, is given by
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In Eq. (7) the first two terms on the right-hand side represent a uniform flow and a dipole, which account for the
potential flow around a circular cylinder. The third term corresponds to the cloud of point vortices that model the
vorticity in the boundary layer and wake, whereas the fourth term corresponds to the image vortices, which appear from
the circle theorem to satisfy the impermeability condition, Eq. (3). The quantities in Eq. (7) are defined as follows: u
and v are the components of u in the x and y directions, respectively; zk is the position of the kth-point vortex with
strength Γk, and zkim ≡ 1/zk* is the position of its image at the inverse point, where the “*” denotes complex conjugate;
and Nv is the total number of vortices present in the flow (not considering their images). Note that the images at the
origin, prescribed by the circle theorem, are neglected, since their presence affects the boundary condition at infinity
(Sarpkaya, 1989).

In PMA, we use the source panel method (Anderson Jr., 1991) to superimpose the flows comprised of the vortex
cloud, the uniform flow and the flow due to a source distribution on the N panels, each of constant strength per unit
panel length λj, to construct a flow field that satisfies Eqs. (1), (3) and (5) automatically. Thus, the u and v velocities
components of the total flow can be written in terms of the vortex and source strengths and the panel geometry
according to the following equations
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where the constants above can be expressed in terms of the geometrical panel parameters, shown in Fig.2, as
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Figure 2. Geometry of the panels.

The aerodynamic force coefficients are calculated through integration of the pressure coefficient distribution around
the circular cylinder, which takes the form
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where CD and CL are the drag and lift coefficients, respectively. In order to calculate the pressure coefficient, we
develop a new algorithm, based on the algorithm proposed by He and Su (1998), such that Cp at a panel control point m
is calculated according to the following expression
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The velocities u(+) and u(-) are calculated at the upper corners of a control volume bounded by panel n and enclosing
a nascent vortex adjacent to the panel, as shown in Fig. 3.

Figure 3. Tangential velocities at the upper corners of a control volume bounded by a panel and enclosing a nascent
vortex adjacent to the panel.

3. THE VORTEX METHOD

3.1. The Algorithm

The two-dimensional, incompressible, unsteady flow around a circular cylinder formulated above is simulated
using the Discrete Vortex Method developed by Mustto et al. (1998), which is based on Eq. (6). This method uses an
algorithm that splits the convective-diffusive operator (Chorin, 1973) in the form
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In a real flow vorticity is generated on the body surface so as to satisfy the no-slip condition, Eq. (4), and is
transported by convection and diffusion into the flow according to Eq. (6). Our discrete vortex method represents the
vorticity by discrete vortices, whose transport by convection and diffusion is carried out in a sequence within the same
time step. First, a lagrangian approach is used to simulate the convective process, governed by Eq. (15). The convective
motion of each vortex is determined by integration of each vortex path equation, which can be written, using a second-
order Adams-Bashforth scheme, as
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In Eqs. (17a) and (17b), ∆xc and ∆yc are displacements of a vortex owing to convection, and u and v are
components of the velocity at the point occupied by the vortex. Second, the process of viscous diffusion, governed by
Eq. (16), is simulated using the Random Walk Method (Lewis, 1991), where the random displacements of each vortex
in the x and y directions owing to diffusion, ∆xd and ∆yd, are calculated from

)cos(rx d θ∆∆=∆   and  )sin( ryd θ∆∆=∆ ,        (18a,18b)
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In the Eqs. (19a) and (19b), P and Q are random numbers between 0 and 1 drawn from a uniform probability density
distribution.

In order to remove the singularity of the point vortices we use Lamb vortices for r ≤ σo, where σo is the radius of the
vortex core. During a time step ∆t, the core grows from zero to σo, where
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t34025.6o
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This value is kept constant for the entire simulation. In terms of σo, the dimensionless velocity induced by the kth-
vortex in the circumferential direction,  uθk, is
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In this particular equation r is the radial distance between the vortex center and the point in the flow field where the
induced velocity is calculated, and C = 5.02572  is a constant. The distance ε off the cylinder surface where the new
vortices are generated per time step (Fig. 3) is set equal to σo for all the cases studied.

The time step ∆t is calculated from an estimative of the convective length and velocity scales of the flow. For a
length scale ∆s between vortices generated at the surface (∼2π/N) and a velocity scale of order one, we can write

N
k2t π

=∆ .   (22)

In Eq. (22), 0 < k  ≤ 1, and N is the number of vortices generated per time step.

3.2. The Numerical Implementation

The numerical method described above is implemented essentially in five steps: (i) generation of new vortices; (ii)
calculation of the forces on the body; (iii) convection of the vortices; (iv) diffusion of the vortices; (v) reflection of
some vortices; (vi) stepping in time.

In the CTA, the process of vorticity generation is carried out so as to satisfy the no-slip condition, Eq. (4).
According to the discussion above the circle theorem guarantees that the impermeability condition is satisfied exactly
on the cylinder surface. At each time step, N new vortices are created at a small distance ε off the body surface, at a



radial distance (1 + ε) to be more precise, with a uniform angular distribution. The strengths of these new vortices are
determined by imposing the no-slip condition at N points on the cylinder surface, right underneath the newly created
vortices (Fig. 4a). In order to implement the entire procedure, the velocities induced by all the vortices in the wake (and
their images) are computed at the N points where Eq. (4) must be satisfied. This contribution is added to the velocities
induced by the new vortices (and their images) and equated to zero. Thus, N equations can be written out for the N
unknowns (the strengths of the new vortices). The last equation is a statement of conservation of circulation, where the
sum of all vortices, with known and unknown strengths (and their images) must equal zero. This procedure yields an
algebraic system of N+1 equations and N unknowns, that is,
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The elements of the (N+1)×N matrix, Ajk, depend only on the position of the vortices just created and on the points
on the cylinder surface where the no-slip condition is imposed. It is, therefore, calculated only once for the entire
simulation. The vector bj, which is recalculated every time step, includes the contribution of all the terms in Eq. (7). The
vortices that penetrate the body (due to the convective and/or diffusive motion) are reflected. In this implementation, the
(N + 1) × N system defined by Eqs. (23) and (24) is written  in the form Ax = b and the Singular Value Decomposition
Method  (Press et al., 1989) is used to solve it.
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Figure 4. (a) Vortex generation scheme in the CTA. (b) Vortex generation scheme in the PMA.

In PMA, the process of vorticity generation is carried out so as to satisfy the impermeability and the no-slip
conditions, Eqs. (3) and (4), simultaneously. At each time step, N new nascent vortices are created at a small distance ε
off the body surface, just above of the panel control points (Fig. 4b), and N new sources are created on the N panel
control points. The strengths of these new vortices and panel sources are determined by imposing the no-slip and the
impermeability conditions simultaneously at the N panel control points on the cylinder surface. In order to implement
the entire procedure, the velocities induced by all the vortices in the wake are computed at the N control points where
Eqs. (3) and (4) must be satisfied. This contribution is added to the velocities induced by the new vortices and panel
sources and equated to zero. Hence, 2N equations can be written out for the 2N unknowns (N new vortex strengths and
N new source strengths). We also add two extra equations, which are statements of conservation of circulation (the sum
of all vortices with known and unknown strengths must equal zero) and mass (the sum of all new source strengths must
equal zero). This procedure yields an algebraic system of 2N+2 equations and 2N unknowns, that is
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Guedes et al. (2002) solves the system above (Eqs. 25 to 28) by relaxing the no-slip and the impermeability
conditions written out for the control point at j = N/2 (central panel on the cylinder backward face). Hence, removing
two equations renders the new (2N)× (2N) system determined. Although very commonly used in linear systems of
algebraic equations obtained from panel methods (Anderson, 1991), this procedure is hard to justify if all equations
come from the same source (Strang, 1988). In addition, the usually small error component produced by this scheme
adds up as the simulation evolves in time, since one new vortex that does not satisfy both the no-slip and the
impermeability conditions is generated every time step. In our new scheme, on the other hand, we remove only the no-
slip condition on panel j = N/2 to form a (2N+1)× (2N) system and we use the Singular Value Decomposition Method
(Press et al., 1989) to solve it. If the linear system is written in the form Ax = b, this method consists of searching for a
least squares solution that satisfies the “normal equations” (Strang, 1988), i.e.,

bAxAA TT = .  (29)

Since the columns of the matrix A are linearly independent, the matrix ATA is an invertible square matrix and
bAA)(Ax T1T −=  , where the solution vector x    is the vector of the unknown Γ’s and λ´s that minimizes the error E

of the solution in the least squares sense (Strang, 1988), where bxA −≡E   . The linear system of algebraic equations
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In the (2N+1) × (2N) matrix A, the N×N submatrix Ajk represents the coefficient matrix of the normal velocities
induced by all the vortices, the N×N submatrix Bjk represents the coefficient matrix of the normal velocities induced by
the source panels, the N×N submatrix Cjk represents the coefficient matrix of the tangential velocities induced by the
vortices, and the N×N submatrix Djk represents the coefficient matrix of the tangential velocities induced by the source
panels. The third and fourth rows, given by Eqs. (27) and (28), represent the conservation of vorticity and mass,
respectively. The elements of the (2N+1)× (2N) matrix A depend on the position of the nascent vortices and panel
control points on the cylinder surface where the no-slip and impermeability conditions are imposed, which do not
change in time. Therefore, this matrix is calculated only once for the entire simulation. The vector bj(t) includes the
contribution of all the terms in Eqs. (8) and (9) and, therefore, it is recalculated every time step.

4. RESULTS AND ANALYSIS

We now present the results for the full simulation of the high Reynolds number, two-dimensional, incompressible,
unsteady flow around a circular cylinder using CTA and PMA. Aiming at demonstrating the performance of both
algorithms for long-time simulations, two long-time runs were performed with 64 vortices generated per time step and t
= 50.00, more than six times the longest simulation carried out by Koumoutsakos and Leonard (1995) for Re = 9500,
their maximum value. Here, only the case Re = 105 was chosen, since this value of the Reynolds number is one order of
magnitude higher than the maximum value chosen by Koumoutsakos and Leonard. Furthermore, the experimental drag
coefficient and Strouhal number for Re = 105 are in a range where they are approximately constant with respect to the
Reynolds number, and still within the subcritical regime. The numerical parameters used in the computations are: ∆t =
0.05, k = 0.50, and ε = σo = 0.0045. Both runs ended with 64000 vortices each.

The flow around a circular cylinder presents several interesting characteristics, which can be described starting with
the occurrence of the separation phenomenon. Due to the blunt geometry of the cylinder, the pressure gradient becomes
adverse on the frontal part of the cylinder surface, triggering separation and a vortex shedding mechanism. For the value
of the Reynolds number investigated in this work, experiments show the formation of the so-called Von Karman vortex
street, which is comprised of large vortices generated and shed alternately from the upper and lower surfaces of the
cylinder. The vortices in the wake are connected in pairs by a vortex sheet. Owing to the periodic characteristics of the
wake, the lift force on the cylinder oscillates in time around zero, with a frequency determined by the Strouhal number.
The periodic behavior of the wake is also reflected on the drag force, which presents a time evolution that oscillates
around a non-zero mean value. However, its non-dimensional frequency is twice the Strouhal number, since the drag
force reaches its maximum value twice for each cycle of the lift force. For these reasons, the experimental values
available in the literature represent time averages for the lift and drag coefficients.

Figure 5 and Fig. 7 illustrates the positions of the vortices present in the flow simulation at t = 50.00, for CTA and
PMA, respectively. Both wakes clearly show the occurrence of separation on the cylinder surface, followed by the
generation and growth of the separated vortices on the back of the cylinder, which precedes their shedding into the
wake. It can also be seen the formation of pairs of the large eddies that comprise the Von Karman vortex street,



connected to each other by thin vortex sheets. The cores of these large vortices grow as they move downstream of the
cylinder due to the diffusive effect of the flow. Note that the farthest vortices in the wake are generated at the initial
moments of the simulation, and they are, therefore, subject to a numerical transient effect.

Figure 5. Positions of the wake vortices for Re = 105, at t = 50.0; N = 64, ∆t = 0.05 and ε = σo = 0.0045 using CTA.
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Figure 6. (a) Time variation of CD and CL for Re = 105, at t = 50.0; N = 64, ∆t = 0.05 and ε = σo = 0.0045 using CTA;
(b) Cp distribution on the cylinder surface at t = 50.0, for Re = 105, N = 64, ∆t = 0.05 and ε = σo = 0.0045 using CTA.

The time histories of the lift and drag coefficients are revealed in Fig. 6 and in Fig. 8. As expected these coefficients
reach a periodic steady state after an initial numerical transient (about 20 units of non-dimensional time), where they
oscillate in time with approximately constant amplitude. The lift coefficient oscillates about zero with a non-
dimensional frequency (Strouhal number, St) of 0.200, for CTA and 0.174 for PMA. These values are calculated using
the CL peaks at t = 23.0 and t =43.0, for CTA, and using the CL peaks at t = 25.5 and t =37.0 for PMA. CTA presents a
little higher value than the experimental one of Blevins’ (1984), who measured 0.19, and PMA presents a little lower
value than the experimental one of Blevins’ (1984), with errors of 5.3% and 8.4%, respectively.

On the other hand, in CTA, the drag force oscillates about a mean value of 1.61 and, in PMA, the drag force
oscillates about a mean value of 1.42 (integrated over the same cycle used to determine each St), with a non-
dimensional frequency approximately equal to twice the Strouhal number. The experimental mean drag coefficient of
Blevins’ is 1.20, whereas the numerical value of Ogami and Ayano (1995) is 1.07. The comparison of our simulations
with the experimental results of Blevins (1984) and the numerical results of Ogami and Ayano (1995) are shown in
Table 1 for easy comparison. Ogami and Ayano’s simulation was carried out using their viscous vortex method, called
the Diffusion Velocity Method. As one can see, the agreement between our numerical methods and Ogami and Ayano’s
method is very good for the mean drag coefficient (Ogami and Ayano do not furnish results for the Strouhal number),
and both results are close to the experimental value. However, for the value of the Reynolds number considered here,
three-dimensional effects are always present in the experiments, whereas the simulations are purely two-dimensional.
Therefore, the computations produce higher values for the drag coefficient, as obtained for our simulation. From this
point of view, our simulations are more accurate than the one obtained by Ogami and Ayano (1995).



Figure 7. Positions of the wake vortices for Re = 105, at t = 50.0; N = 64, ∆t = 0.05 and ε = σo = 0.0045 using PMA.
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Figure 8. (a) Time variation of CD and CL for Re = 105, at t = 50.0; N = 64, ∆t = 0.05 and ε = σo = 0.0045 using PMA;
(b) Cp distribution on the square cylinder surface at t = 50.0, for Re = 105, N = 64, ∆t = 0.05 and ε = σo = 0.0045 using
PMA.

In Table 1 and the graphs presented in Fig. 6 and in Fig. 8, we can compare the results for the aerodynamic forces
and pressure distribution of both implementations. Comparing the time histories of the lift and drag coefficients, we can
notice that the results presented by CTA are more defined and smoother than the ones of PMA.

The Circle Theorem Algorithm presents better results than the Panel Method Algorithm because the impermeability
boundary condition is satisfied over the entire circular cylinder surface and the no-slip boundary condition is satisfied
only at the control points, whereas, in PMA, both impermeability and no-slip conditions are satisfied only at the panel
control points.  Both implementations used the Singular Value Decomposition Method, but in PMA, it was necessary to
add two conservation equations (mass and vorticity conservation). Because the Singular Value Decomposition Method
does not produce good results when the algebraic system has 2N+2 equations and N unknowns, we relax the no-slip
condition at the N/2 panel and work with 2N+1 equations. This means that one vortex is generated without satisfying
the no-slip boundary condition every time step.

On the other hand, CTA presents longer CPU times because of the presence of images inside the cylinder, showed
in Eq. (7). As seen in Table 1, CTA presents a CPU time simulation about 4 times longer than the PMA CPU time. In
addition, PMA allows other geometries to be easily simulated with good agreement with experimental results (Guedes
et al, 2002 and Guedes et al, 2003), being necessary only to change the panel coordinates and other little adjustments in
the reflection procedure of the vortices that enter the body during the simulation.

Table 1. Numerical Results for Circle Theorem Algorithm (CTA) and Panel Method Algorithm (PMA) and Experimental Results.

Algorithm CPU time Cd St Reference Cd St
Circle Theorem

Algorithm (CTA) 72h.56min. 1.61 0.200 Blevins (1984):
experimental 1.20 0.190

Panel Theorem
Algorithm (PMA) 18h.33min. 1.42 0.174 Ogami e Ayano (1995):

numerical 1.07 -



5. CONCLUSIONS

A comparative analysis to study the incompressible, two-dimensional, unsteady flow around a circular cylinder is
performed to evaluate two versions of the discrete point vortex method: one that uses the circle theorem and another
that uses a constant-strength source panel method.

In summary, CTA presents more accurate calculations of the force coefficients and Strouhal number than PMA
because the impermeability boundary condition is satisfied over the entire circular cylinder surface and the no-slip
boundary condition is satisfied only at the panel control points, whereas, in PMA, both the impermeability and the no-
slip conditions are satisfied only at the panel control points. On the other hand, CTA presents longer CPU times because
of the generation of image vortices inside the cylinder. In our simulations, CTA presents a CPU time about 4 times the
PMA CPU time. PMA has also the advantage of allowing other geometries to be easily simulated with good agreement
to experimental data.
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