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Abstract. This contribution is concerned with modeling and simulation of quenching employing the finite element method. An
anisothermal constitutive model formulated within the framework of continuum mechanics and the thermodynamics of irreversible
processes is considered adopting two phases: austenite and martensite. A numerical procedure is developed based on operator split
technique associated with an iterative numerical scheme in order to deal with nonlinearities in the formulation. With this
assumption, coupled governing equations are solved involving four uncoupled problems: thermal, phase transformation,
thermoelastic and elastoplastic behaviors. Classical finite element method is employed for spatial discretization of thermal and
thermoelastic uncoupled problems. Progressive induction hardening of steel cylinders is concerned as an application of the general
procedure. A comparison between numerical and experimental measures is performed showing good agreements between them.
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1. Introduction

Quenching is a heat treatment usually employed in industrial processes. It provides a mean to control mechanical
properties of steels. The process consists of raising the steel temperature above a certain critical value holding it at that
temperature for a fixed time, and then rapidly cooling it in a suitable medium to room temperature. The resulting
microstructures formed from quenching (ferrite, pearlite, bainite and martensite) depend on cooling rate and steel
characteristics. Considerable residual stresses may be formed during quenching process and therefore, its prediction is
an important task (Inoue and Raniecki, 1978; Sjöström, 1985; Denis et al., 1985; Denis et al., 1992; Denis et al., 1999;
Fernandes et al., 1985; Woodard et al., 1999; Sen et al., 2000; Çetinel et al., 2000; Gür and Tekkaya, 2001).
Nevertheless, the proposed models are not generic and are usually applicable to simple geometries as cylinders. Several
authors addressed Finite Element Method (FEM) in order to analyze quenching process. Sen et al. (2000) considers
steel cylinders without phase transformations. Other authors considered simple geometries with phase transformations
(Çetinel et al., 2000; Gür and Tekkaya, 2001; Chen et al., 1997; Gür and Tekkaya, 1996). Gür et al. (1996) studied the
effect of the refrigerant medium in cylinders with an eccentric hole.

Phenomenological aspects of quenching involve couplings among different physical processes and its description
is unusually complex. Basically, three couplings are essential: thermal phenomena, phase transformation and
mechanical aspects. Complex aspects as the heat generated during phase transformation are treated by some authors
considering the latent heat associated with phase transformation (Denis et al., 1999; Inoue and Wang, 1985; Denis et
al., 1987; Sjöström, 1994). Meanwhile, other coupling terms in the energy equation related to other phenomena as
plastic strain or hardening are not treated in literature and their analysis is an important topic to be investigated.
Pacheco et al. (1997; 2001a; 2001b) and Silva et al. (2002) propose a constitutive model to describe the thermo-
mechanical behavior related to the quenching process. This anisothermal model is formulated within the framework of
continuum mechanics and the thermodynamics of irreversible processes considering two phases: austenite and
martensite. The proposed approach is general and allows a direct extension to more complex situations. The model
includes thermomechanical couplings in the energy equation associated with phase transformation, plasticity and
hardening, allowing the investigation of the effects promoted by these coupling (Silva et al., 2002).

The present contribution uses the cited constitutive model associated with FEM in order to simulated quenching
process. As an application of the general formulation plane elements are adopted which allows the description of
axisymmetrical problems. The extension to other element types is a direct task. Comparisons between numerical and
experimental measures of steel cylinders are carried out in order to validate results.
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2. Constitutive Model

The thermodynamic state of a solid is completely defined by the knowledge of state variables. Constitutive
equations may be formulated within the framework of continuum mechanics and the thermodynamics of irreversible
processes, by considering thermodynamic forces, defined from the Helmholtz free energy, ψ, and thermodynamic
fluxes, defined from the pseudo-potential of dissipation, φ  (Pacheco et al., 2001a; Pacheco et al., 2001b; Silva et al.,
2002).

A Helmholtz free energy is proposed as a function of observable variables, total deformation, εij, and temperature,
T; also, internal variables are considered: plastic deformation, p

ijε , volumetric fraction of martensitic phase, β, and
another set of variables associated with phase transformation, hardening and other effects as damage. Here, this set
considers a variable related to kinematic hardening, αij. Therefore, the following free energy is considered, presented in
indicial notation where summation convention is evoked (Eringen, 1967):
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Iβ(β) is the indicator function related to the convex set { } 10| ≤≤= βββC  (Rockafellar, 1970). Moreover,
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)(βββ IZ ∂∈  is the sub-differential of the indicator function Iβ (Rockafellar, 1970).
Austenite-martensite phase transformation is described with the aid of the following condition:

( ) ( ) ( ) ( )fsMA MTTMrMsTTT −⋅−⋅−=→ ΓΓΓς &&, (9)

where rMs is the critical cooling rate for the martensite formation, defined from the continuous cooling transformation
(CCT) diagram; T&  is the cooling rate. Also, Γ(x) is the Heaviside function (Wang et al., 1997). Therefore, using the
equation proposed by Koistinen and Marburger (Koistinen and Marburger, 1959) to express the kinetics of phase
transformation, it is possible to write:
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here, k is a material constant. Ms is the temperature where martensite starts to form in the stress-free state and Mf is the
temperature where martensite finishes its formation in the stress-free state.
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where sign(x) = x / |x| and λ is the plastic multiplier from the classical theory of plasticity (Lemaitre and Chaboche,
1990); qi is the heat flux vector, gi = (1/T) ∂T/∂xi and Λ is the coefficient of thermal conductivity which is function of
temperature; ),(*

ijijf XPI  is the indicator function associated with elastic domain, related to the von Mises criterion
(Lemaitre and Chaboche, 1990),
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σY is the material yield stress, d
ijX = Xij - δij (Xkk/3) and d
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Assuming that the specific heat is 22 /)/( TWTc ∂∂−= ρ  and the set of constitutive equations (2-4, 11-12), the
energy equation can be written as (Pacheco, 1994):
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The term aI is denoted as internal coupling and is always positive. The term aT denotes the thermal coupling and
can be either positive or negative. In this article both terms are neglected and thermal problem is solved as a rigid body.

3. Finite Element Formulation

In order to deal with the nonlinearities of the formulation, an iterative numerical procedure is proposed based on
the operator split technique (Ortiz at al., 1983). With this assumption, coupled governing equations are solved from
four uncoupled problems: thermal, phase transformation, thermo-elastic and elastoplastic. In this article, finite element
method is employed to perform spatial discretization of governing equations. Therefore, the following moduli are
considered:

Thermal Problem - Comprises a radial conduction problem with surface convection. Material properties depend
on temperature and, therefore, the problem is governed by nonlinear parabolic equations. Classical finite element
method is employed for spatial discretization while Crank-Nicolson method is used for time discretization (Lewis at al.,
1996; Gartling and Hogan, 1994; Segerlind, 1984).



Phase Transformation Problem - Volumetric fraction of martensitic phase is determined in this problem.
Evolution equations are integrated from a simple implicit Euler method (Pacheco et al., 2001a; Pacheco et al., 2001b;
Ames, 1992; Nakamura, 1993).

Thermo-elastic Problem - Stress and displacement fields are evaluated from temperature distribution. Classical
finite element method is employed for spatial discretization (Segerlind, 1984).

Elastoplastic Problem - Stress and strain fields are determined considering the plastic strain evolution in the
process. Numerical solution is based on the classical return mapping algorithm (Pacheco et al., 2001a; Pacheco et al.,
2001b; Simo and Hughes, 1998).

As an application of the general procedure technique, plane axisymmetric FEM is considered. Triangular
elements with linear shape functions are adopted for all finite element moduli (Segerlind, 1984).

4. Numerical Simulation

As an application of the general proposed model, numerical investigations associated with the progressive
induction (PI) hardening of long steel cylindrical bar are carried out. PI hardening is a heat treatment process that is
done moving a workpiece at a constant speed through a coil and a cooling ring. Applying an alternating current to the
coil, a magnetic field is generated which induces eddy currents that promote the heating of a thin surface layer where
austenite is formed. After that, this layer is cooled transforming austenitic phase into martensite, pearlite, bainite and
proeutectoid ferrite/cementite depending on, among other things, the cooling rate. A hard surface layer with high
compressive residual stresses, combined with a tough core with tensile residual stresses, is often obtained.

This article considers PI hardening simulations in a cylindrical bar with radius R and a thickness of induced layer,
ePI. Experimental measures are used as reference values considering a steel cylinder SAE 4140H, 45 mm diameter and
180 mm length, subjected to different induced layers thickness ePI (3.5mm, 8.0mm and 11.0mm), where the hardness is
greater than HRC 40. The specimen induced layer is heated to 1120K (850°C) for 5s and then, the surface is sprayed
by a liquid medium at 294K (21°C) for 10s. After that, the specimen is subjected to air-cooling until a time instant of
60s is reached (Camarão, 1998; Melander, 1985a; Melander, 1985b). Figure (1a) shows cross-sections of quenched
bars with different induced layers thickness subjected to a Nital etch 2%. Figure (1b) presents its Rockwell C hardness
measures for an induced layer thickness of 3.5 mm. Moreover, stress values on the surface layer are estimated using the
X-ray diffraction peak technique (Camarão, 1998).
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Figure 1. (a) Cross-sections of quenched bars with different induced layers thickness submitted to a Nital etch 2%. (b)
Rockwell C hardness measures for an induced layer thickness of 3.5 mm (Pacheco et al., 2001a; Pacheco et al., 2001b;
Camarão, 1998; Camarão et al., 2000).

Material parameters for numerical simulation are presented in Tab. (1). Other parameters depend on temperature
and are interpolated from experimental data (Pacheco et al., 2001a; Pacheco et al., 2001b; Melander, 1985a; Melander,
1985b; Hildenwall, 1979). Convection heat transfer coefficient for cooling fluid (Ucon E 2.8%) and air are also
interpolated from experimental data (Pacheco et al., 2001a; Pacheco et al., 2001b; Melander, 1985a; Melander, 1985b;
Camarão, 1998; Hildenwall, 1979).

Table 1. Material parameters (SAE 4140H).

k = 1.100 x 10-2 K-1 κ = 5.200 x 10-11 Pa-1 Ms = 748 K
γ = 1.110 x 10-2 ρ = 7.800 x 103 kg/m3 Mf = 573 K

FEM analysis is performed exploiting the axisymmetrical geometry of the cylinder. A single strip of the cylinder is
assumed to model the quenching process (Gür and Tekkaya, 1996). This assumption is employed since the passage of
the moving workpiece through the heating and cooling rings induces their effects in this single strip while adjacent



material, above and below this strip, is at lower temperatures. The material at lower temperatures prevents the axial
strain and, as a consequence, plane strain condition may be adopted. Moreover, radial heat flux is assumed.

Figure (2) shows a mesh with 488 nodes and 842 elements employed in numerical simulations after a convergence
analysis. The segment OM is at the cylinder center axis while LK is at the cylinder surface. Null displacements
conditions are imposed in OK and ML. Moreover, thermal boundary conditions impose convection condition in KL
while other faces have adiabatic conditions.

Figure 2. Mesh employed for finite element analysis.

Figure (3) shows the distribution of volumetric fraction of martensite, β, for the final time instant considering
different thickness of induced layer, ePI. Figure (4) establishes a comparison between experimental and numerical
results for ePI = 3.5 mm showing that they are in close agreement.

The forthcoming analysis considers residual stresses in the final time instant for different thickness of induced
layer, ePI (Figs. 5-6). Component σr presents lower magnitudes than other components (σθ and σz). Components σθ and
σz are always compressive in cylinder surface. As the thickness of induced layer, ePI, increases, compressive
components σθ  present lower magnitudes (Fig. 5) while compressive components σz  present higher magnitudes (Fig.
6).

A different way to observe previous results is analyzing the radial distribution of residual stress components (Fig.
7). An important characteristic to be pointed out is the sign inversions of the residual stress values, which defines
different regions of the specimen. In general, induced layers of 3.5mm and 8.0mm have compressive stress in either the
surface and the core of the cylinder. On the other hand, when ePI = 11 mm, the surface has compressive stresses but the
core present tensile stresses. This result is similar to the behavior of the through hardening (Pacheco et al., 2001a;
Pacheco et al., 2001b). As the induced layer is reduced, values of σz become less negative at the surface tending to
become positive when thin layers are assumed (Pacheco et al., 2001b). This condition must be avoided, since tensile
stress field on the surface can promote the growth of surface defects. All these considerations show that the thickness
of the induced layer is an important parameter on the residual stress distribution.

(a)

(b)

(c)

Figure 3. Volumetric fractions of martensite: (a) ePI =3.5 mm; (b) ePI =8.0 mm; (c) ePI =11.0 mm.



Figure 4. Comparison between numerical and experimental results: Volumetric fraction of martensite for ePI = 3.5 mm
(Pacheco et al., 2001a; Pacheco et al., 2001b; Camarão, 1998).

(a)

(b)

(c)

Figure 5. Residual stress σθ distribution for different ePI: (a) 3.5 mm; (b) 8.0 mm; (c) 11.0 mm.



(a)

(b)

(c)

Figure 6. Residual stress σz distribution for different ePI: (a) 3.5 mm; (b) 8.0 mm; (c) 11.0 mm.

     (a)         (b)

Figure 7. Residual stress distribution over the radius for the final time instant.(a) σθ; (b) σz.

Temperature distribution tends to become homogeneous for any thickness of induced layer. Nevertheless, the time
history is quite different. Figure (8) presents the effect of induced layer thickness in temperature distribution showing
temperature time history for different radius positions: core (r = 0), midpoint (r = ½ R) and surface (r = R). Moreover,
different values of induced layer thickness are considered. The surface temperature evolution allows one to identify
two distinct cooling stages: in the liquid medium (5 < t ≤ 15 s) and in the air (t > 15 s).



(a)

           
 

 (b)      (c)

Figure 8. Time history of temperature for different radius positions and ePI: (a) 3,5 mm; (b) 8,0 mm; (c) 11,0 mm.

Table (2) establishes a comparison between numerical and experimental measures. For the induced layer thickness
of 3.5 mm an error less than 2% is observed for both the circumferential stress, σθ, and longitudinal stress, σz. By
increasing the induced layer thickness, an error less than 2% is still observed for the circumferential stress, σθ. The
longitudinal stress, σz, on the other hand, presents a discrepancy (15% for induced layer thickness of 8 mm and 40%
for induced layer thickness of 11 mm). These discrepancies could be assigned to plane strain state adopted in order to
simulate quenching process. This assumption try to represent the restriction associated with adjacent regions of the
heated region, which are at lower temperatures. By increasing induced layer thickness, temperature distributions tend
to be essentially non-homogeneous promoting different strain distributions.

Table 2. Comparison between numerical and experimental measures.

σθ (MPa) σz (MPa)ePI (mm)
Experimental Numerical Experimental Numerical

3,5 −830 −817.4 −505 −512.2
8,0 −752 −721.0 −486 −559.6

11,0 −636 −637.9 −440 −618.0

5. Conclusions

The present contribution is concerned with modeling and simulation of quenching process, considering finite
element method associated with an anisothermal constitutive model with two phases (austenite and martensite). A
numerical procedure is developed based on operator split technique associated with an iterative numerical scheme in
order to deal with nonlinearities in the formulation. With this assumption, coupled governing equations are solved
involving four uncoupled problems: thermal, phase transformation, thermoelastic and elastoplastic behaviors. Classical
finite element method is employed for spatial discretization in uncoupled problems. Progressive induction hardening of
steel cylindrical bodies is considered as an application of the proposed general formulation. Numerical and
experimental results are in agreement. The authors agree that the proposed model can be a useful tool to predict the
thermomechanical behavior of quenched mechanical components. This is important for choosing essential parameters
as the cooling medium and the induced layer thickness. It should be pointed out that the proposed approach is general,
allowing a direct extension to more complex situations. The analysis of three-dimensional media and the inclusion of
other phases can be easily achieved.
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