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Abstract. The present contribution considers modeling and simulation of the quenching process, presenting an anisothermal model 
formulated within the framework of continuum mechanics and the thermodynamics of irreversible processes. The energy equation 
thermo-mechanical coupling terms due to internal and thermal couplings are exploited. In order to analyze the importance of these 
terms, three different models are considered. The first one is an uncoupled model in the sense that these terms are neglected, 
corresponding to the rigid body energy equation. In second model, these couplings are represented through the incorporation of a 
source term in the energy equation associated with the latent heat released during the austenite-martensite phase transformation. 
Finally, the third model considers all thermo-mechanical coupling terms of the proposed model. Progressive induction hardening 
of a cylindrical body is considered as an application of the proposed general formulation. Numerical simulations present some 
situations where it is important to consider the thermo-mechanical coupling terms due to internal and thermal couplings. 
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1. Introduction 
 
 Quenching is a commonly used heat treatment process employed to control the mechanical properties of steels. In 

brief, quenching consists of raising the temperature of the steel above a certain critical temperature, called austenitizing 
temperature, holding it at that temperature for a fixed time, and then rapidly cooling it in a suitable medium to room 
temperature. The resulting microstructures formed from quenching (ferrite, pearlite, bainite and martensite) depend on 
cooling rate and on steel characteristics, which are normally expressed by the Continuous Cooling Transformation 
(CCT) diagram. If the steel is cooled sufficient rapidly following austenitizing, the formation of ferrite, pearlite and 
bainite is avoided, and martensite is produced. The volumetric expansion associated with the formation of martensite 
combined with large temperature gradients and non-uniform cooling promotes high residual stresses in quenched 
steels. The prediction of such stresses is a rather difficult task. 

 Quenching represents one of last stages in the fabrication of mechanical components. This process may induce 
distortion or even cracking, and hence it is important to predict residual stresses caused by this process. Many works 
are devoted to this aim (Denis, 1996; Denis et al., 1992, 1999; Fernandes et al., 1985, 1986; Woodard, et al., 1999; 
Sjöström, 1985, 1994; Sen et al., 2000), however, the proposed models are not generic and are usually applicable to 
simple geometries. 

Phenomenological aspects of quenching involve couplings among different physical processes and, therefore, its 
description is unusually complex. Basically, three couplings are essential: thermal phenomena, phase transformation 
and mechanical aspects. Pacheco et al. (2001) propose a constitutive model to describe the thermo-mechanical 
behavior related to the quenching process. This anisothermal model is formulated within the framework of continuum 
mechanics and the thermodynamics of irreversible processes. One of the advantages of this formulation is the 
possibility to identify couplings, estimating the effect of each one on the process. The cited reference considers a 
numerical procedure based on the operator split technique associated with an iterative numerical scheme in order to 
deal with nonlinearities in the formulation. With this assumption, the coupled governing equations are solved from four 
uncoupled problems. The proposed general formulation is applied to the progressive induction hardening of steel 
cylinders. In the cited reference, numerical results are carried out neglecting energy equation thermo-mechanical 
coupling terms associated with internal and thermal couplings. 

The present contribution revisits this constitutive model exploiting the thermo-mechanical coupling in the energy 
equation considering austenite-martensite phase transformation process. This is an important task on the description of 
quenching process and is not completely reported in literature. Sjöström (1985), for example, says that thermo-
mechanical coupling terms in the energy equation are essential in the modeling of quenching process. Habraken & 
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Bourdouxhe (1992) and Woodard et al. (1999) present a finite element analysis considering energy equation couplings 
as a latent heat, showing that it is an essential effect to be considered in the modeling of quenching. Levitas (1997, 
1998, 2000) and Idesman et al. (1997, 2000) made important contributions to the study of thermo-mechanical aspects 
of phase transformation in elastoplastic materials. 

In this article, numerical simulations establish a comparison among three different models: Uncoupled, which 
does not include energy equation coupling terms; Latent heat, with a source term in the energy equation associated with 
the latent heat released during the martensitic phase transformation; and Coupled, that considers all coupling terms in 
the proposed model. 

 
2. Constitutive Model 

 
The thermodynamic state of a solid is completely defined by the knowledge of the state variables. Constitutive 

equations may be formulated within the framework of continuum mechanics and the thermodynamics of irreversible 
processes, by considering thermodynamic forces, defined from the Helmholtz free energy, ψ, and thermodynamic 
fluxes, defined from the pseudo-potential of dissipation, φ  (Pacheco et al., 2001). 

 The quenching model proposed here allows one to identify different coupling phenomena, estimating the effect of 
each one in the process. With this aim, a Helmholtz free energy is proposed as a function of observable variables, total 
deformation, εij, and temperature, T; also, internal variables are considered: plastic deformation, , volumetric 

fraction of martensitic phase, β, and another set of variables associated with the phase transformation, hardening and 
other effects as damage. Here, this set considers a variable related to kinematic hardening, α

p
ijε

ij. Therefore, the following 
free energy is considered, presented in indicial notation where summation convention is evoked (Eringen, 1967): 
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where ρ is the material density. The elastic deformation is defined as follows: 
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In the right hand side of this expression, the first term is the total strain while the second is related to plastic strain. 

The third term, , is associated with thermal expansion. The parameter αijT TT δα )( 0−

)β

T is the coefficient of linear 

thermal expansion, T0 is a reference temperature and δij is the Kronecker delta. The fourth term, , is related to 
volumetric expansion associated with phase transformation from austenite to martensite. Therefore, when part of a 
material experiences phase transformation, there is an increment of volumetric deformation, proportional to γ, a 
material property related to the total expansion associated with martensitic transformation. Finally, the last term, 

, is denoted as transformation plasticity deformation, being the result of several physical 
mechanisms (Denis, 1985; Sjöström, 1985; Cherkaoui, 2002). This behavior is related to localized plastic deformation 
promoted by the martensitic transformation. In this term, the deviatoric stress component is defined by                 = 

σ

ijγβδ
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ij − δij (σkk/3), with σij being the stress tensor component. Moreover, κ is a material parameter. It should be 
emphasized that this deformation may be related to stress states that are inside the yield surface. 

 With these assumptions, energy functions may be expressed by, 
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The components Eijkl and Hijkl are associated with elastic and hardening tensors, respectively; C1 and C2 are 

positive constants. Auxiliary tensors are also defined in order to simplify this expression: 
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Tensor component Φ  is associated with the inverse of Cijpq

{  10| ≤≤= βββC
ijpq and Iβ(β) is the indicator function related to the 

convex set  (Rockafellar, 1970). 
 The austenite-martensite phase transformation is described with the aid of the following condition: 
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where rMs is the critical cooling rate for the martensite formation, defined from the CCT diagram; T&  is the cooling 
rate. Also, Γ(x) is the Heaviside function (Wang et al., 1997). 

Therefore, the kinetics of martensitic phase transformation may be expressed by 
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where  is defined from the equation proposed by Koistinen and Marburger (1959): mβ
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where, k is a material constant. Ms is the temperature where martensite starts to form in the stress-free state and Mf is 
the temperature where martensite finishes its formation in the stress-free state. 

Thermodynamics forces (σij, Pij, Xij, Bβ, s), associated with state variables ( , are defined as 
follows: 
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where: 
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Again, auxiliary tensors are defined in order to simplify the expressions presented before: 
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)(βββ IZ ∂∈  is the sub-differential of the indicator function Iβ (Rockafellar, 1970). 

 In order to describe dissipation processes, it is necessary to introduce a potential of dissipation , 

which can be split into two parts: . Also, this potential can be written 

through its dual :  
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where gi = (1/T) ∂T/∂xi and Λ is the coefficient of thermal conductivity which is function of temperature;  
is the indicator function associated with elastic domain, related to the von Mises criterion (Lemaitre & Chaboche, 
1990),  
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σY is the material yield stress, = Xd

ijX ij − δij (Xkk/3) and . A set of evolution laws obtained from φ* 
characterizes dissipative processes, 
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where sign(x) = x / |x|; qi is the heat flux vector and λ is the plastic multiplier from the classical theory of plasticity 
(Lemaitre & Chaboche, 1990). 

 Assuming a specific heat as  and the set of constitutive equations (12-16, 24-27), the 
energy equation can be written as: 
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 The term aI is denoted as internal coupling and is always positive. It has a role in (Eq. 27) similar to a heat source 

in the classical energy equation (heat equation) for rigid bodies. The term aT denotes the thermal coupling and can be 
either positive or negative. 

 With these assumptions, the set of constitutive equations formed by (11-15, 23-26) verify the inequality 
established by the second law of thermodynamics which can be expanded in a local form as: 

 



  (29) 0 )(0  21 ≥−=≥+−= iiijij
p

ijij gqdBXd βαεσ β &&&

 
The term d1 represents mechanical dissipation while d2 is thermal dissipation.  
It should be pointed out that the coupling term  from the term  (Eq. 29a), always vanishes. Notice that if 
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s and T < Mf, then , vanishing the term. On the other hand, if M0=β& s ≥  T ≥  Mf, . However, from the 
definition of the indicator function, I
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β = 0, and therefore, the coupling term must be zero again. For the same reasons, 
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 In metal forming, the thermo-mechanical coupling is usually taken into account by an empirical constant called 
the heat conversion factor, χ , which represents the part of the plastic power transformed into heat (Pacheco, 1994): 
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Some authors consider the latent heat effect related to phase transformation (Denis et al., 1987; Denis et al., 

1999; Woodard et al., 1999; Sjöström, 1994). The internal heat source due to the latent heat released during phase 
transformation may be described by: 
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where ∆Hm is the latent heat released during the austenite-martensite transformation. The latent heat released is 
associated with enthalpy change (Woodard et al., 1999).  
 
3. Cylindrical Bodies 

 
This contribution considers cylindrical bodies as an application of the proposed general formulation. Other 

references present different analyses of this problem (Pacheco et al., 1997; Camarão et al., 2000). With this 
assumption, heat transfer analysis may be reduced to a one-dimensional problem. Also, plane stress or plane strain state 
can be assumed. Under these assumptions, only radial, r, circumferential, θ, and longitudinal, z, components need to be 
considered and a one-dimensional model is formulated. In brief, it is important to notice that tensor quantities may be 
replaced by scalar or vector quantities. As examples, one could mention: Eijkl replaced by E; Hijkl replaced by H; σij 
replaced by σi (σr , σθ , σz). A detailed description of these simplifications could be found in Pacheco et al. (2001). 

 The numerical procedure here proposed is based on the operator split technique (Ortiz et al., 1983; Pacheco, 
1994) associated with an iterative numerical scheme in order to deal with nonlinearities in the formulation. With this 
assumption, coupled governing equations are solved from four uncoupled problems: thermal, phase transformation, 
thermo-elastic and elastoplastic. 

 
Thermal Problem - Comprises a radial conduction problem with surface convection. Material properties depend on 

temperature, and therefore, the problem is governed by nonlinear parabolic equations. An implicit finite difference 
predictor-corrector procedure is used for numerical solution (Ames, 1992; Pacheco, 1994). 

 
Phase Transformation Problem - Volumetric fraction of martensitic phase is determined in this problem. Evolution 

equations are integrated from a simple implicit Euler method (Ames, 1992; Nakamura, 1993). 
 
Thermo-elastic Problem - Stress and displacement fields are evaluated from temperature distribution. Numerical 

solution is obtained employing a shooting method procedure (Ames, 1992; Nakamura, 1993). 
 
Elastoplastic Problem - Stress and strain fields are determined considering the plastic strain evolution in the 

process. Numerical solution is based on the classical return mapping algorithm (Simo & Miehe, 1992; Simo & Hughes, 
1998). 
 
4. Numerical Simulations 

 
As an application of the general proposed model, numerical investigations associated with the quenching of long 

steel cylindrical bar are carried out simulating a progressive induction (PI) hardening, which is a heat treatment process 
carried out by moving a workpiece at a constant speed through a coil and a cooling ring. Applying an alternating 
current to the coil, a magnetic field is generated inducing eddy currents that heat the workpiece. When heated, a thin 
surface layer of austenite is formed. Afterward, a cooling fluid is sprayed on the surface by the cooling ring promoting 
the quenching of the layer, which is transformed into martensite, pearlite, bainite and proeutectoid ferrite/cementite 



depending on, among other things, the cooling rate. A hard surface layer with high compressive residual stresses, 
combined with a tough core with tensile residual stresses, is often obtained. 

 This article considers progressive induction hardening simulations in a cylindrical bar with radius R and a 
thickness of induced layer, ePI. In order to consider the restriction associated with adjacent regions of the heated region, 
which are at lower temperatures, a plane strain state is adopted. Experimental results for progressive induction 
hardening in cylindrical bodies, discussed in Pacheco et al. (2001) are used as reference for the comparison with the 
numerical results here obtained. 

Material parameters of SAE 4140H cylinder are presented in Table 1 and the latent heat released, associated with 
enthalpy change for austenite-martensite trasformation, is ∆Hm = 640 x 106 J/m3. Other parameters depend on 
temperature and are interpolated from experimental data as follows (Melander, 1985; Hildenwall, 1979; Camarão. 
1998; Pacheco et al., 2001; Silva, 2002): 

 
Table 1 – Material parameters (SAE 4140H). 

k = 1.100 x 10-2 K-1 κ = 5.200 x 10-11 Pa-1 Ms = 748 K 
γ = 1.110 x 10-2 ρ = 7.800 x 103 kg/m3 Mf = 573 K 
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where h is the heat convection coefficient. 

At first, consider PI hardening simulations in a cylindrical bar with radius R = 22.5 mm. A 3.5 mm thickness 
layer is heated to 1120 K (850°C) for 5 s and then sprayed by a liquid medium at 294 K (21°C) for 10 s. Afterwards, 
air-cooling is assumed until a time instant of 60 s is reached. A convergence analysis is developed and a spatial 
discretization of 81 points with a variable time step (5.6 x 10-6 s for t < 5 s, 5.6 x 10-4 s for 5 s ≤ t < 15 s and 5.0 x 10-2 s 
for t ≥ 15 s) is adopted. 

Martensitic volumetric fraction distribution through the radius is now considered for the final time instant. 
Different approaches to evaluate thermo-mechanical coupling terms are concerned in order to establish a comparison 
among results. Latent heat approach presents more drastically discrepancies than the proposed coupled model, when 
compared to results of uncoupled model (Figure 1). 

 



 
Figure 1 – Effect of coupling terms in the distribution of volumetric fractions of martensite through the radius. 

 
The forthcoming analysis presents residual stress components distribution for the final time instant. Results 

confirm the previous analysis for the volumetric fraction of martensite, showing that the consideration of the energy 
equation thermo-mechanical coupling terms (coupled model) in the analysis produce intermediate results between 
uncoupled analysis and the latent heat approach. Figure (2) presents residual stress components distributions through 
the radius. 

 

      
      (a)             (b)            (c) 

Figure 2 – Effect of coupling terms on the distribution of residual stress component. (a) σr; (b) σθ ; (c) σz. 
 

Temperature distribution is now focused. Figure (3) presents the temperature time history for different positions in 
the cylinder. The energy equation thermo-mechanical coupling terms introduce a delay in the temperature evolution. In 
spite of the small amount, the delay can influence considerable diffusive phase transformations, for example, as pointed 
by Woodard et al. (1999). 
 

  
        (a)              (b)         (c) 

Figure 3 – Effect of coupling terms on the temperature distribution. 
(a) center, r = 0; (b) r = R/2; (c) surface, r = R. 

 
Effects of energy equation thermo-mechanical coupling terms may become more pronounced for other geometry or 

quenching conditions. As examples, one could mention the thickness of the induced layer and the diameter of the 
cylinder. Woodard et al. (1999) exploit this second situation. The forthcoming analysis is concerned with situations 
that elucidate this behavior. At first, consider the previous example, related to a cylindrical bar with R = 22.5 mm. 
Figure (4) shows values of circumferential and longitudinal residual stress components at the surface of the cylinder for 
different thickness of induced layer. Notice that the effect of energy equation thermo-mechanical coupling terms is 
more pronounced for the smaller thickness value of induced layer. Assuming the uncoupled model as a reference, the 
coupled model presents a difference of about 70 MPa (10%) and 60 MPa (62%) for circumferential and longitudinal 
stresses, respectively. The latent heat approach present higher differences: 90 MPa for both circumferential and 
longitudinal stresses, meaning differences of 13% and 90%, respectively. Figure (5) shows that the effect of thermo-



mechanical coupling terms related to the coupled and latent heat models become more important in martensitic 
volumetric fractions determination for intermediary values of the thickness of induced layer (5 mm). 

 

     
(a)           (b) 

Figure 4 – Effect of coupling terms for different thickness of induced layer on stress components at the surface of a 
cylinder with R = 22.5 mm. (a) σθ ; (b) σz. 

 

   
(a)            (b)            (c) 

Figure 5 – Effect of coupling terms for different thickness of induced layer on the volumetric fractions of martensite in 
a cylinder with R = 22.5 mm. (a) 1 mm; (b) 5 mm; (c) 15 mm. 

 

  
(a)           (b) 

Figure 6 – Effect of coupling terms for different thickness of induced layer on stress components at the surface of a 
cylinder with R = 100.0 mm. (a) σθ ; (b) σz. 

 
At this point, a cylinder of radius R = 100 mm is considered. Under this situation, the effects of thermo-mechanical 

coupling terms are even more pronounced, confirming the conclusion of Woodard et al. (1999). Figure (6) shows 
values for circumferential and longitudinal residual stress components at the surface of the cylinder for different 
thickness of induced layer. Considering the smaller thickness value of induced layer (ePI = 1 mm) and assuming the 
uncoupled model as a reference, differences of about 70% and 250% are observed for circumferential stress 
considering the coupled and latent heat models, respectively. On the other hand, using the same analysis for 
longitudinal stress, it is observed differences of about 20% and 50% considering the coupled and latent heat models, 
respectively. For ePI values in the range of 15 to 18 mm, discrepancies among the coupled model with respect to the 
others is about 200 MPa for circumferential and 140 MPa for longitudinal stresses. For ePI values greater than 22 mm, 
the three models present similar values of residual stresses. Figure (7) presents the distribution of matensitic volumetric 
fractions predicted by each model. Once again, for martensitic phase distribution, energy equation thermo-mechanical 
coupling terms become more important for a range of intermediary values of the thickness of induced layer (2.5 to 5 
mm). For ePI values greater than 12.5 mm, both coupled and latent heat models present similar martensitic phase 
distribution. 
 



   
 (a)            (b)            (c) 

Figure 7 – Effect of coupling terms for different thickness of induced layer on the volumetric fractions of martensite in 
a cylinder with R = 100.0 mm. (a) 1 mm; (b) 2.5 mm; (c) 12.5 mm. 

 
5. Conclusions 

  
The present contribution considers modeling and simulation of the quenching process, presenting an anisothermal 

model formulated within the framework of continuum mechanics and the thermodynamics of irreversible processes. 
Progressive induction hardening of a cylindrical body is considered as an application of the proposed general 
formulation. Thermo-mechanical coupling is exploited in order to evaluate the effect of internal and thermal coupling 
terms in the energy equation. Three different models are considered with this aim: Uncoupled, which does not include 
energy equation coupling terms; Latent heat, with a source term in the energy equation associated with the latent heat 
released during the martensitic phase transformation; and Coupled, that considers all coupling terms in the proposed 
model. Numerical simulations show that the energy equation thermo-mechanical coupling terms influence the 
determination of residual stress and the austenite-martesite phase transformation. These effects tend to become more 
pronounced in the analysis when greater diameters are considered. The variation of the thickness of induced layers 
related to progressive induced hardening is also an important parameter that influences the coupling terms. It should be 
pointed out that more drastically discrepancies may be expected in the analysis of quenching process considering other 
phases. Regarding temperature distribution, for example, even in situations where values are not considerably affected 
by the thermo-mechanical coupling terms, small temperature variations may cause different predictions for diffusive 
phase transformations because the time delay of the response. Besides, for the possibility of the formation of other 
phases (ferrite, pearlite and bainite) the proposed model predicts the incorporation of other coupling terms associated 
with these phases. Therefore, the authors agree that a complete comprehension of thermo-mechanical coupling terms 
must be obtained from the analysis of a model that contemplates diffusive and non-diffusive phase transformations. 
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