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Abstract..The present paper is concerned with gravity waves which appear on the free surface of a container of liquid, shaped as a 
two dimensional box undergoing forced horizontal or vertical oscillations. Oscillations induced by a stationary initial condition 
where the liquid surface is instantly at a non-equilibrium configuration are also considered. 
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1. Introduction 
 

Free surface waves can be generated by means of an imposed movement on a partially filled reservoir. Violent 
wave impacts inside confined spaces have been observed on vehicles transporting liquid substances, subject to large 
accelerations/decelerations. In such cases wave reflection on the walls induces hydro-dynamical forces, which may 
cause hazardous destabilizing effects. This fluid/structure interaction may cause the container’s rupture, instability and 
loss of maneuverability on vehicles loaded with liquids. That is the case of fuel tanks in trucks, aircraft, spacecraft and 
ship, which in certain circumstances are subject to harmonic loads of high amplitude, and may reach resonant modes. 
Bredmose et al. (2002) observed that two very different types of response may coexist in a confined tank: a violent brief 
impact of the liquid on the container wall and long lasting/large amplitude sloshing motions.  

Ockendon & Ockendon (1973) find for a 2D box of length  and depth hL, undergoing harmonic horizontal 
oscillations, a discrete spectrum of frequencies: 

Lπ

 
2/1)]/tanh([ Lnhgn=ω ,           (1)  

 
where g is the acceleration of gravity and n is the wave-number. Resonance occurs, when the fluid is forced to oscillate 
at these frequencies; for resonant oscillations, are meant forced oscillations, of a small magnitude, which produce an out 
of proportion large response, when compared with the input harmonic oscillations. A search about the word 'sloshing', 
at the ‘search engines’ of the Internet, reveals stories which are both mysterious and scary; some of these  tell about 
serious car accidents, caused by the sloshing of the petrol inside the reservoir; this one has been told by ‘witnesses’ at 
´yahoo.com.´ 

The generation of patterns of steep standing waves is an important feature observed in sloshing motions. If certain 
driving frequencies are imposed, vertical accelerations in a container induces the growth of standing waves, also known 
as Faraday waves. Bredmose et al. (2002) report the formation of “table-top” breaking waves numerically and 
experimentally when studying steep, breaking, Faraday waves. Longuet-Higgins (2001) shows that vertical jets may 
result from high amplitude standing waves; that is known as “the bazooka effect”. The free surface flows mentioned 
above have gravity as its main restoring mechanism. On a smaller scale, however, surface tension may significantly 
affect wave properties. Small scale ripples, or capillary waves, occur due to external accelerations imposed on the 
reservoir. Billingham (2001) finds that, under zero gravity conditions, periodic and chaotic solutions and solutions 
where the topology of the fluid changes, either through self-intersection or pinch off, are possible. 

The present work is concerned with free surface waves produced, on the surface of a container, shaped as a 2D box, 
which is partially filled with liquid. The box is made of two vertical walls, set at a distance of L apart; there may be an 
impermeable horizontal bottom set at a mean.distance H from the free surface; or the water may be deep; it is also 
possible to consider a horizontal flat lid closing the box. In such cases we are interested in the study of  violent 
horizontal or vertical oscillations. Energetic vertical shaking, is bound to produce very large oscillations; with 
amplitudes in excess of 2.5 mean depths; in various applications, in different fields, that is of importance for the 
stability of vehicles  transporting liquid loads in confined spaces.  

We start with a regular train of periodic waves propagating over a flat impermeable bed; in fact there is no physical 
bed; as the bed is imposed through a Method of Images. If the wave period, with no loss of generality,  fits the length of 

and then at ,  a vertical line of symmetry is imposed on the flow, as a result a vertical  line non percolation is π2 π
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created; as the waves are periodic, we have to have an infinite array of such impermeable vertical lines, or walls, with a 
spacing of  from each other; and then we may consider a horizontal impermeable lid, closing the box; in order to 
evaluate wave impacts coming from underneath the lid. According to H. Bredmose et al. (2002), an important 
characteristic of sloshing motions in a tank, is the generation of patterns of steep standing waves. That is of importance 
because  
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Some results of numerical experiments with the wave box have been obtained, in our calculations. These are for: 
i) Taking a box at rest, with liquid inside, and a free surface instantly tilted to one side, with  a configuration 

of non equilibrium; as the water is released, the liquid sloshes inside the box; the energy which keeps the 
oscillations is conserved. 

ii) The box may undergo forced horizontal oscillations; at the present stage these oscillations have to  be 
gentle,  either slow or of a little amplitude in order to preclude   premature breaking. 

iii) Vertical oscillations of the box, may produce very energetic standing waves, of a high amplitude, 
producing spectacular splashes; with a sort of mushroom like waves; if there is an impermeable horizontal 
flat lid, closing the box   energetic splashes may hit the lid from the underneath.  

There are some striking differences, between traveling gravity waves and standing waves; traveling waves of a 
certain amplitude are prone to super-harmonic instability;  which causes steepening at the front face of the wave leading 
to wave breaking. Standing waves, due to its intrinsic  symmetry, and the vertical motion of the crest, are likely to   
attain exceptionally  high amplitudes without breaking, and starting an  experiment with one period  
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Figure 1. Fluid domain geometry. 
 
Bredmose et al. (2002) investigated experimentally and numerically the generation of steep forced waves in a moving 
tank filled with liquid, finding a good agreement between experiment and computation.  
The present work is related to the study of sloshing in a reservoir modelled as a 2-D impermeable box with a flat 
horizontal bottom and two vertical walls spaced by a distance d (see figure 1). We suppose an initially flat free surface 
of liquid with depth h. The aspect ratio h/d and the frequency of oscillations ω are the parameters of the problem. A 
lateral and/or vertical harmonic motion is imposed at the boundaries of the reservoir.  
The nonlinear unsteady free surface flow is numerically simulated by means of a boundary-integral method developed 
by Dold & Peregrine (1986). For small length scale reservoirs and zero gravity situations, surface tension effects 
become important and may produce especial features at the free surface (Jervis 1996, Billingham 2002). These cases are 
of interest and are also included in the modelling. 
 
2. The boundary value problem 
 

We assume a non-viscous and incompressible free surface flow with an arbitrary constant vorticity ζ . Then 
Laplace´s equation, 

 
02Φ∇ ,                          (2)  

 
is satisfied on the fluid domain for a full velocity potential Φ. The oscillations imposed at the box are introduced in the 
model by decomposing  into a regular part Φ φ  (due to surface waves) and a perturbed part φ  (due to a harmonic 
external forcing). The kinematic boundary condition states that fluid particles move with their own velocity u , r
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where . At the free surface Bernoulli´s equation is satisfied, ), yr =
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where p is the atmospheric pressure,  is the density, ρ τ  is the surface tension, κ is the free surface curvature and  is 
the stream function. At the vertical walls and at the bottom, the boundary condition is of the Neumann type i.e. both 
walls and bottom are supposed to be rigid and impermeable. In all the computed cases presented in this paper surface 
tension effects are neglected. 
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3. Fully nonlinear boundary integral solver 
 

The problem described in section 2 is solved through the use of a boundary integral equation, related to Cauchy´s 
integral theorem (see Dold & Peregrine 1986). The flow is determined by means of a point discretisation of the free 
surface contour, which significantly reduces the computational demand for the calculation of the fluid motion, since 
only surface properties are evaluated. The method of solution consists of the following stages; initially the full potential  

 is known on the surface; the disturbed potential Φ φ  is also defined and subtracted from the surface value of Φ, such 
that the remaining surface wave potential φ  can be used with Cauchy´s integral theorem, to calculate the velocity φ∇  on 
the free surface. Then the potential φ  is added back in and the corresponding total velocities are evaluated. The free 
surface is stepped in time using a truncated Taylor series. Such stages are repeated until the final time is reached, or the 
algorithm breaks down. 

The complex velocity is given as, 
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where . The impermeability condition on the bed is satisfied by considering an image region (see figure 
2).  
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Figure 2. (a) A sketch of the z-plane with a periodic wave and its reflection onto the bed. (b) The corresponding -
plane obtained via a conformal mapping. 
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4. Results 
 

The resulting free surface flow for a box at rest is shown in figure 3. A sinusoidal profile with wave 
amplitude  is used as the initial condition for the fully nonlinear boundary value problem. The non-
dimensional time is given by T(g/L)

01.00 =A
1/2. For T(g/L)1/2=45.0, a travelling wave can be observed propagating to the right 

until it encounters the impermeable wall. As time evolves nonlinearity starts to become dominant causing wave 
breaking at T (g/L)1/2=54.0. For smaller wave amplitudes the problem follows linear water wave theory. No wave 
breaking occurs with a vertical oscillating, steady, free surface flow. In all the computed tests wave energy was 
conserved. 
 
 
 
 
 



  

 
     T (g/L)1/2 = 0.0                                                                  T (g/L)1/2 = 18.0    

 
   T (g/L)1/2 = 27.0                                                                 T (g/L)1/2 = 36.0 

 
    T (g/L)1/2 = 45.0                                                               T (g/L)1/2 = 54.0 

 
Figure 3. Nonlinear sloshing of gravity waves in a stationary box . The initial condition corresponds to a 

sinusoidal wave of amplitude . Aspect ratio L is the tank length. 
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     T (g/L)1/2 = 0.0                                                                T (g/L)1/2 = 6.0 

 
   T (g/L)1/2 = 12.0                                                             T (g/L)1/2 = 18.0 

 
    T (g/L)1/2 = 24.0                                                              T (g/L)1/2 = 37.0 

 
Figure 4. Nonlinear sloshing of gravity waves in a horizontal oscillating box ( ) . Initially the free 

surface is at rest. Aspect ratio L is the tank length. 
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Figure 4 shows the fully nonlinear results obtained for a horizontal oscillating box. Initially the free surface is at 
rest and is disturbed by an imposed harmonic horizontal acceleration of the form, 
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where  is the amplitude of the acceleration and k is the wavenumber. For all the computed cases, k=1. Figure 4 

shows results for and . A travelling wave can be observed moving to the left when 
T(g/L)

0α
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1/2=24.0 until wave breaking occurs at T (g/L)1/2=37.0. 
 
5. Summary 
 

The efficient and precise algorithm developed by Dold & Peregrine (1986) to compute free surface flows has been 
successfully extended to simulate fully nonlinear sloshing in a 2D box. Preliminary results show that under certain 
conditions nonlinearity may become important even for smallish wave amplitudes. 
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