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Abstract.A low Reynolds numbe¢-¢ model was developed for predicting drag reducing turbulent flows of elastic fluids. The
rheology of the fluid was modelled by a Generalized Newtonian model modified to mimic relevant effects of extensional viscosity. A
new damping function, that takes wall effects into account, is also proposed. The predictions of friction factor, mean velocity and
turbulent kinetic energy compare favourably with data from the literature for various polymer solutions. The advantage of this
model is that it only needs input data from the rheology of the fluid and the bulk velocity of the flow in contrast to existing models
for drag reducing fluids which must be modified on a case by case basis
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1. Introduction

The development of turbulence models for engineering applications in duct flows of drag reducing fluids has not
received the attention it deserves. Early work took place in the 1RWBsshinaet al, 1974; Hassid arféoreh, 1975;

Durst andRastogi, 1977) and later attempts were usually limited to inelastic fiMidin| 1997; Cruz et al, 2000). The
existing turbulence models usually consist of the Newtonian formulationadititocmodifications, especially in the
numerical value of the parameters. These depend on the fluid and flow to be predicted and do not take full account of
fluid rheology. A more detailed review can be found in Pinho (2003).

Adopting aGeneralised Newtonian fluid (GNF) which was modified to include effects of strain-hardening of the
extensional viscosity, Pinho (2003) derived the transport equations of momentum, Reynolds stress, turbulent kinetic
energy and its rate of dissipation and then performed an order of magnitude analysis to identify their relevant terms.
That work then concentrated on developing closure ferg type model, but no details were given of the numerical
values of the parameters and of the form of the damping functions and no predictions were carried out or comparisons
made with experimental data. The present work completes the task by providing those missing details, performing
simulations of pipe flow with viscoelastic polymer solutions and comparing the corresponding results with experimental
data.

The paper iorganised as follows: in the next section the equations to be solved and the turbulence model are
presented. Theesults of the simulations and their comparison with experimental data is the subject of Section 3. The
paper ends with a summary of the main conclusions and a list of future developments.

2. Rheological and transport equations
2.1. The fluid constitutive equation
Thegeneralised Newtonian fluid (GNF) &f. (1) is adopted where the viscosity function is giveigy(2)

0 =2uS (1)

p-1 n-1 p-1
2 znvxKe[éz]T - U =KV[VZ]TKeé2]T (2)

This expression combineshear-thinning and strain-hardening, the latter in an attempt to mimic the effect of
extensional viscosity on turbulent flow, as explained in Pinho (2003). The first p&t.of2) accounts for the
viscometricbehaviour where the consistency and power law indiggsgndn) are obtained by least-square fitting to
viscometric viscosity data. The second parEqgf (2) introduces the strain-rate dependence into the viscosity model,

while respecting some physical constraints and homogeneity. It must obey some lelitangours and consequently
it is given as the following ratio of extensiongl,) andviscometric () viscosities
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The 1/3 coefficient ensures that, for purely viscous fluids, the viscorbetraviour is fully recovered in the limit
of very small deformations, in agreement with continuum mechanics. This ratio must be calculategfzt for

reasons explained in Barnes et al (1989). We recommend that the experimental data for the extensional viscosity be
-1 .
fitted by a power law, and then divided Hy(vl'ﬁeln , in this way providing both the coefficiemt, and indexp. €

stands for an invariant of the rate of deformation tensor measuring the strain rate (Pinho, 2003).
The viscosity is a non-linear function of fluctuatikigematic tensors and so it is decomposed into average and
fluctuating viscosities. An expression for the time-average molecular viscosity was derived in detail by Pinho (2003)

and is given b¥eq. (4). The expression is in closed form once the turbulence kinetic energﬁ /2 and its rate of
dissipationg are known.
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with A, =045, A = 10 andmandB are given by
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The effect of turbulence on the average molecular visc@gjtyvia the nonlinear dependence prande , appears

through the two terms dq. (4) containingk and ¢ . If the fluid has no shear-rate and no strain-rate dependence, a
constant viscosity coefficier;, = KK is recovered.

Since expression (4) was derived from arguments of high Reynolds number turbulence (shhstrptrue
average molecular viscosity in near-wall regions cannot be exclusively givgy b&t a wall there will be no velocity

fluctuations, the flow will be one-dimensional, and the average viscosity must reduce to a pure viscometric form
without any extensionaffect . To take this into account the average molecular viscgsig/given by

= fuTh + (1_ fv)r]v (6)

introducing the damping functioty. The role of f, is akin to that of the damping function for the eddy viscosﬁi}y
and it was decided by Cruz and Pinho (2003) to mgke fu after an extensive series of tests. The functilgnis
presented in Section 2.2.

2.2. Transport equations
Forfully-developed pipe flow the transport equation of momentum is

1 dU0_du

_rdrHBJdr_p %_dx ()

wherer is the radial coordinateis the longitudinal coordinatél is the axial mean velocity angl is the time-average
pressure. The Reynolds shear stress is given by the turbulent viscosity hyp&itpe8)safnd the eddy viscosityy is
modeled by th&randtl-Kolmogorov equation, dampened by to account for low Reynolds number effects.
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Eg. (8) uses the modified rate of dissipatnof turbulent kinetic energy, as is typical in most near-wall low
Reynolds numbek-¢ models (Patel et al, 1985), to facilitate the implementation of wall boundary conditions. It is
related to the true rate of dissipatierby € =¢ + D, whereD is the last term on the right-hand-sidefaf. (9).k and€
are obtained from their own transport equations for fully-developed pipe Hqwg and 10). For viscoelastic fluithe
transport equation dfwas proposed by Pinho (2003).
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There are several low Reynolds numkear models for Newtonian fluids which differ in the numerical values of
their parameters and in the form of their damping functions (Patel et al, 1985). As explained in Cruz and Pinho (2003),
this turbulence model is based on Nagano Hishida’'s (1987) model for Newtonian fluids where the damping
functions f;, f, and f,, take on the following forms:

k2

< and i :[1—exp(—y+ /26.5)]2 (11)

f=1.0, f, =1- 03exp( RT) with R =

The modifications to the Newtonian low Reynolds nuniberturbulence model are of two types:
i) Direct changes in the equations due to a different constitutive equation: the new last term on the right-hand-side of
Eg. (10), the new time-average molecular viscosit (T/p ) and its damping functiori,,;

ii) Modifications of existing terms, parameters or damping functions: the new form of damping fufyction

The wall coordinatey+ must use the new time-average molecular viscosity and two definitions, shBgn(ik2),

. . . . .+ . . . +
are possible: the use of the local time-average viscosity, leading, tor of the wall viscosityw,, ) leading toy,, . In
both caseay represents the friction velocity. The corresponding damping functignaill be referred to as the M1

and M2 formulations, respectively.
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To derive f; for this GNF constitutive model, Vabriest's (1956) philosophy was used but adapted to the new
fluid rheology. The damping function was considered to be the prodyct (. fue) of a purely viscometric
contribution (f,, for p= 1,n < 1) by a purely extensional contributiori¢ for p > 1, n = 1). For each contribution we

attempted to derive expressions showing the form of the attenuation of oscillations in the second problem of Stokes, as
explained in detail in Cruz and Pinho (2003). The final form of the damping function is

n . 3-p A+D
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with A"= 26.5, the value used by Nagano andhida (1987). The function introduces parameferequiring
quantification, the subject of Section 3.1. Rer 1 andp = 1, Eq. (13) gives the expressionkq. (11).

The other coefficients of the model, listed in Table 1, remain unchanged because the amount of data required for
their determination for viscoelastic fluids are scarce and the new paratpettakes the numerical value of 1 for the
same reasons.

Table 1- Values of the parameters assigned to Nagandishida's low Reynoldk-¢ model.

Cu ok O-S Cgl ng
0.09 1.0 1.3 1.45 1.90

3. Results and discussion

To test the two formulations of the turbulence model, predictions must be compared with sets of experimental data
that include measurements of the viscometric and extensional viscosities.

Simultaneous measurements of extensional viscosity, viscometric viscosity and hydrodynamic quantities for dilute
polymer solutions are scarce in the literature but were carried &sdoylier et al (1999) arferesti (2000)Escudier et
al (1999) performed pressure drop, flow rate and LDA measurements of the mean velocity in a pipe flow with a
diameter of 100.4 mm, using aqueous solutions of polyacrilamide (F@Adhan gum (XG), carboxymethil cellulose



(CMC) and a blend of XG and CMC at various weight concentrations. The corresponding turbulence kinetic energy

data are available iRresti (2000).
Fitting Egs. (2)and (3) to the experimental viscometric and extensional viscosity data yielded the parameters listed
in Table 2.

Table 2- Parameters of viscosity lawkxds. (2)and (3) used to fit the viscosity dataBecudier et al (1999)

Fluid K, [Pad]] n Ke p
0.25% CMC 0.2639 0.6174 2.0760 1.2678
0.3% CMC 0.2748 0.6377 2.7485 1.2214
0.09% CMC/0.09% XG 0.15178 0.5783 2.1833 1.1638
0.2% XG 0.2701 0.4409 3.8519 1.2592
0.125% PAA 0.2491 0.425 1.9394 1.4796

All solutions are shear-thinning and Trouton-thickening, i.e., although the extensional viscosity was found to be
strain-thinning, its rate of decrease with strain rate is slower than that of the viscometric viscosity with shear rate and
consequently the Trouton ratio is strain-hardening.

A first series of simulations was carried out with the aqueous solution of 0.125% PAA, aimed at determining the
value of the new paramet€rappearing in the damping functiofye . This fluid was selected randomly. Then, using

only the flow rate and the rheology of the fluids as input conditions, predictions of turbulent flow for other fluids were
performed.

The numerical simulations were carried out with a finite volume code and the wall to wall computational domain
was represented by a non-uniform mesh with 199 cells having at least 12 control volumes within each viscous sub-layer

(y\,T, < 5). This mesh provided mesh-independent results within 0.1%.

3.1. Determination of parameterC

The correct strategy for evaluating paramé&ewould be the solution of an inverse problem, but this was not
attempted and a trial-and-error method was used instead. Using the rheology for 0.125% PAA several nhumerical values
of C were tried and the predictions ¢f- Re, were compared with the experimental Rg, data, wherd is Darcy's
friction coefficient andRg,, is the Reynolds number based on the wall viscosity and bulk flow velocity.

Figure 1 compares the predictions bf- Rg,, with data fromEscudier et al (1999). The computations were made
with models M1 and M2 of the damping function. M2 gave higher values of the friction coefficient than M1, but in both
cases the amount of drag reduction was clearly in excess to that due to purely shearbbhaiiaur represented by
the dashed line. The dashed line represents the friction factor for a purely viscougp #uijl gbeying the same power

law model and is given b¥q. (14) according to Dodge and Metzner (1959). For reference, the maximum drag
reduction asymptote (MDRA) of Virk (1975¢. 15) is also plotted.
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For the predictions to compare well with experime@ts 9 is needed for M1. For M2, a higher value@fis
required, especially at high Reynolds numbers. Parar@eatexs introduced in an order of magnitude analysis leading to
fLe and we feel that it should not differ from 1 by more than a factor of 10. AltHowgds kept at 9 for both damping

functions in this work, the value should dqgimised for formulation M2.

The slope of thef - Rg, predictions is less than that for the measurements indicating the need for further
improvements in the turbulence model. The figure also includes results of simulations for a similar fluid without strain
rate dependence of the Trouton rais (L). For model M2, these predictions compare well &ijh (14) showing no
elastic drag reduction as it should: at high Reynolds numbers the difference rel&iiye1d) is of the order of 1% or
less whereas at low Reynolds numbers the model predicts a higher valoye @b to 10%. In contrast, M1 predictions
for p= 1 have excessive drag reduction, an indication that the M2 formulation is to be preferred, in spite of a less good
prediction of thef for viscoelastic fluids. However, this can be improved by increasing the numerical v&lweitbiout
any impact fop= 1

The disagreement between the experimental data and the laminar correlation at low Reynolds nReba4)(
is due to differentcalings. The data are plotted here using the wall Reynolds number, whereas the cdrrebdiion
is universal when using thlgneralised Reynolds number.
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Figure 1- Comparison between the predicted and experimeBsauflieret al, 1999)fRefor 0.125% PAA. Open

symbols (M1) refer to Model 1, closed symbols (M2) refer to Modgk=2. refers to simulations for purely viscous
0.125% PAA solution.

3.2. Friction factor

Using C= 9, predictions of for the other fluids are compared in Fig. (2). The figure shows mixed results: M2
always predicts less drag reduction than M1, but the difference is particularly large for the 0.2% XG solution (in excess
of 30%) and less so for the blend of CMC and XG (20%). With the other fluids the predictions of drag reduction (DR)
with M2 are about 15% lower than those obtained by M1. Drag reduction (DR) is defined as

DR=— N x100% (16)
N
where fy is the Newtonian friction factor at identical Reynolds number. Of significance was the fact that in all cases
drag reduction was significantly larger than the amount exclusively attribusbedo-thinningEq. 14).

Model M1 predicted well the results for 0.25% CMC and the blend (at low Reynolds numbers) and slightly
overpredicted drag reduction for the 0.3% solution. Model M2 predicted well the drag reduction for 0.3% CMC and
0.25% CMC at low Reynolds numbers amuderpredicted in the other cases. In all cases the slope-dRg, was
lower than the slope of the measur¢d- Rg, data, hence the agreement between predictions and experiments is

always over a limited range of Reynolds numbers. Still, it is important to emphasize that this is the first time a general
turbulence model, not previously tuned with the flows to be predicted, has been able to calculate such intense drag
reductions in turbulent viscoelastic pipe flow.

3.3. Mean velocity

Figure 3 compares predicted mean velocity profiles in wall coordinates with measured daEsduatier et al
(1999). Other cases are not shown here for conciseness, but the comparisons are qualitatively identical.
The figures include several curves: the Newtonian log-law profile, the viscous sub-layer velocity profliekand
(1975) ultimate drag reduction asymptote. Figure 3-a) also includes predictions for a Newtoniam=fluid {) at a
high Reynolds number of 200,080 obtained with the same code and turbulence model. The Newtonian prediction
collapses with the viscous sub-layer equation fgr< 4 and is in agreement with a standard Newtonian log-law

expression f0|yv’; > 40. This confirms the generality of the proposed turbulence model.
The experimental profiles show three regions in agreement with Virk (1975): the viscous sub-layer at low values of
y\;, an inertial layer at higly\:, with the same slope as the Newtonian log-law, and an intermediate log-law layer with a

higher slope than the inertial sub-layer. For very large drag reductions the intermediate log-law extends through the
whole pipe.
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Figure 2- Comparison between predicted ar@suredfRe[9] for various polymer solutions: (a) 0.2% XG; (b) 0.25%
CMC,; (c) 0.3% CMC; (d) 0.09%/0.09% CMC/XG blend.

The comparisons between the non-Newtonian predictions and the experiments are remarkable considering the
novelty of the turbulence model. The turbulence model captures the viscous sub-layer and predicts a log-law with a
higher slope than the Newtonian log-law except at the pipe center where the velocity becomes constant. This behavior is
qualitatively in agreement with the experiments although the predictions do not show the doublebdehaeanur
outside the viscous sub-layer. In none of the predictions the velocity profile coincidegnkshasymptote especially
for the 0.125% PAA in Figure 3-d): here, whereas the experimental data collapsérkstasymptote, the predicted
velocities do not but areot too far, especially for M1. Still, the slope of the predicted profile is close to that of the
asymptote for M2 and this is consistent with the corresponding friction factor beingVitkar friction factor
asymptote (see Figure 1). However, it is also interesting to notice that the corresponding experimental friction factor
data do not coincide with the asymptote of Virk for friction.

In some cases, the predictions are in-between the experimental data, i.e.yattt@vexperimental velocities are
underpredicted whereas at hig\ljf; they areoverpredicted as for the 0.3% CMC solution. For 0.25% CMC the velocity

prediction by M1 is better than that of M2 which is consistent with the corresponding friction factor data. The profiles
obtained with model M2 are closer\fak's asymptote than those of model M1 as with the friction factor data.

In our opinion, the absence of the inertial log-law is related to the absence of a region, ﬂ; higiere the
damping function assumes a constant value.
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Figure 3- Comparison between calculated and experimdegallieret al, 1999) velocity profiles in wall coordinates:
(@) 0.09%/0.09% CMC/XG Rg, = 45300); (b) 0.25% CMC Rg, = 16600); (c) 0.3% CMC Rg, = 4300); (d)

0.125% PAA (Rg, = 42900). Newtonian predictions with the same codeggt= 200800 (+).

3.4. Turbulent kinetic energy and Reynolds stress profiles

Predictions ofk (Figure 4) for 0.125% PAA aRe, = 42970 are compared with experimental result®efsti
(2000). The data frorRresti [29] correspond to the same flow conditions as the mean flow dataugfier et al (1999).
The Newtonian predictions have the expected form Vkiﬂlrz varying from O at the wall, going through a

maximum of 4.3 aty\,JQ = 2C and then decreasing towards the axis to a value of 1.25, in agreement with predictions by

other Newtoniark —& models.

For non-Newtonian fluids both formulations of the turbulence modetpredict turbulence in the central region of
the pipe, and the peak turbulenceverpredicted with M1 andnderpredicted with M2, except for the PAA in physical

coordinates (Figure 4-b). The peak turbulekﬁa[2 for drag reducing fluids is always higher than for Newtonian fluids

and its location is farther away from the walu¢hik andTiederman, 1988). These general features are also captured
by the predictions although by different amounts in relation to the experimental data. In several cases the turbulence in

the pipe core is well predicted by M2. The peak valuek,bj[2 of 12 is probably higher than it should be under drag
reducing conditionsExperiments with data on the three components of the normal Reynolds stress are scarce, but
amongst the few, Pinho and Whitelaw (1990) found peak valuaduff in excess of 12 for aqueous solutions of

CMC, andPresti'(2000) data have maximum values of around 8 except for their polyacrylamide solutions where peak

values higher than 12 were also measured.
As far as the location of the peak turbulence is concerned, it is usuatiyredicted, the exception being the blend

in physical coordinate representation (not shown here). In the inertial kdyés well predicted by M2 for the high



Reynolds number flow cases: XG, the blend and less so the PAA solution. Clearly in excess is also the location of this
peak aty,,= 70 to 80, which is too far away from the wall, within the inertia dominated region. The higher turbulence
peak and its location farther from the wall are features also predicted before by the turbulence models quoted in Section
1 that were adapted for drag reducing flows. In those older turbulence models, peak turbulence was closer to the wall
than in here but, as emphasized before, they lacked generality and were previmdilyr the flows to be predicted.
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Figure 4- Comparison between calculated and experimental profilesatoRg, = 42,900 for 0.125% PAA: (a) wall
normalization (b) physical normalization. Newtonian predictioreg, = 42,970.

In terms ofk/U2 the peak turbulence should be lower than for Newtonian fluids, a feature only captured by M2.

For the PAA solution the maximum value dlj’Uz of around 0.011 is just less than that of the Newtonian fluid

(0.0115), and the peak is located farther from the wall, as it should.
No other experimental data are availablé&gtudier et al (1999) arferesti (2000), so the following comparisons
are between predictions for a Newtonian fluid and for the 0.125% PAA solution.
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Figure 5- Radial variation of theormalised Reynold Figure 6- Variation of the damping functidiy in wall

shear stress in pipe flow. Comparison between predic coordinates. Model 1 and Model 2 results obtained
of Newtonian and 0.125% PAA flows with model 1 (M 0.125% PAA.
and model 2 (M2) aRg, = 42,900.

___The radial profiles of Reynolds shear stresg’ are compared in Figure 5. For the Newtonian fluid the shear stress
u'v' varies linearly in the 80% central region of the pipe in accordance to a momentum balance with negligible



molecular shear stress. However, the 0.125% PAA solution shows a Reynolds shear stress deficit, with M1 predicting
the highest deficit in agreement with its higher drag reduction. As far as the peak turbulent shear stress is concerned its
location is farther from the wall for the polymer solution, regardless of the damping function adopted and its numerical
value is half that for Newtonian fluids. The reasons forlibisaviour will become clear next as the radial variations of

the damping functionfLl areanalysed. The profile of , not shown here, shows a maximum for 0.125% PAA that is

half the peak Newtonian value, and its location is slightly farther away from the wall than for Newtonian fluids (at
yw =10 againsty,, =7 for Newtonian fluids).
These numerical predictions are also qualitatively in agreement with other experimental RiasltsKi et al,

2001) and with results from DNS simulationsifmitropoulos et al (2001) using théscoelastic FENE-P model.
Finally, in Figure 6 the Newtonian, M1 and M2 damping functidpsare compared. Whereas the Newtonign

varies from zero at the wall to 1 gﬁ =300, the viscoelastic functions are very damping: function M1 does not exceed
0.025 and function M2, although ledamping, only reaches a maximum of 0.14.
Since f,, is also used for the molecular viscosity, (cif.= fu in Eq. 6), the weighted molecular viscosify

remains basically unaffected by turbulengg,{ and is given byn,. The small decrease of the Mf, at the pipe

center is a consequence of the very high local viscosity given by the power law, which was fitted to the intense shear-
thinning viscositybehaviour of the 0.125% PAA, since it is the local viscosity that is used to defief. Eq. 12). By

using a constant viscosity to defily@ this feature is removed in the M, .

Since the predictions of this turbulence model were adjusted to experimental data by selecting theCvatbhe of
momentum is conserved with the rolean"sij taken by the purely viscous terpus; and the strong dampening gf

brought by f,, but this substitution is not equivalent, though. The excessive role played by damping fungtéorgs

f are probably undesirable features which were possible here because the adoption of a rheological equation,
accounting for the combined effects of shear-thinning, strain-thickening and turbulence on the viscosity, allowed the
derivation of the damping functions to be systematic. However, these two strategies are not equivalent in terms of the

turbulence model: proper account Qi 'Sj should reduce the impact qL and f,, while maintaining the same drag

reduction capability, but perhaps affectiagourably the balance between the turbulent quantifies andg . This will
not free us from the use of damping functions, as is known from Newtonian modeling, but the numerical ®@alue of
could probably be reduced.

This constitutes the next major improvement of the present turbulence model. Still, this closure constitutes a
breakthrough in the current framework because it is the first model able to predict turbulent drag reducing flows,
including the purely viscous case, which only uses as input rheological parameters of the fluid.

4. Conclusions

A low Reynolds number version of the-¢ model derived in Pinho (2003) wéisalised and used to predict
turbulent pipe flow of varioudrag reducing polymer solutions. The model was built on top of the Newtonian model of
Nagano andHishida to which it reduces in the limit of constant viscometric and extensional viscosities. Two new
viscous damping functions‘.u and f,, had to be derived for the new rheological model to take into accountfieals

into the eddy and molecular viscosities. The extra term in the dissipation equation was found to have a positive role on
turbulent quantities although it had a small effect upon the mean velocity profile and friction factor.

The current turbulence model predicted well the reduction in the friction factor of polymer solutions after
quantification of a new model parameté€r Under these conditions, the turbulence model was able to predict
satisfactorily mean velocity profiles, the reductiong,ia and in the production d&f the shift of their peaks away from
the wall and the appearance of a deficiRi@ynolds shear streshe damping function recommended is M2 and uses

the wall viscosity to compute the wall coordingz@fe.
The functions fu and f, were seen to be too damping probably due to the lack of model fora:erg;gjw in the
momentum equation and solution of this shortcoming constitutes the next major improvement of the model.
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