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Abstract. Currently, a high percentage of manufacturing operation time are spent in product handling, whether transportation,
positioning tasks or both. Electromechanical positioning systems (EPS) are becoming faster and more accurate based on the
development of technologies associated with Servomotors and Stepper motors. These last have been gaining land as an economic
alternative to Servos. In order to be competitive stepper are increasing its operation velocity and torque. Up to date, several
methodologies to carry out transient analysis have been developed for EPS , in order to minimize response time. The majority of
them are analytical aproachs which are based on linearization thecniques which disgard important variables such as friction force
and electrical time constant In this paper newer and more complete non-linear model of this electromechanical system is presented
looking for determination of electrical and mechanical parameters incidence in time constant value. The ordinary differential
equations system (ODE'’s) that governs the transient behavior are solved numerically and compared with linear solutions. Results
shows that factors such as friction force and stator electrical time constante affect net system time constan. Finally an adjusted
matemathical time constant expresion is obtained by non-linear multivariable regression analysis.

Keywords Drive Systems & Power Systems, Electromechanical Model, Stepper motor, Non-linear model, Numerical Solution,
Non-linear regression.

1. Introduction

Modeling an optimization of fast drive electromechanical system has been developed mainly by private companies
which applies gained knowledge in products, such as printers, and robotic manipulators. Most recent public work about
it was developed by Riba C (1997) who introduces the concept of Transient Power and Double Kinetics Energy Method
for electromechanical time optimization. This approach is useful for servomotor drive systems because is based on the
assumption that torque delivered by the systems is constant. Maury (1998) introduce the time constant (Ogata, 1987) as
a criteria for EPS time minimization and developed linear models for different kinds of motor including Variable
Reluctance and Hybrid Step Motors. Mathematical models for time constant determination are based in linearized sets
of differential equations, such as Lawrenson and Hughes (1975) two phases model, the four phase model of Alabern
(1990) and models used for control purposes, Alin (2001) and Melkote (1997)

2. Model formulation
Figure 1 shows the electro-mechanical system to be modeled in this paper. This EPS is composed by a two phases

hybrid stepper motor, a coupling unit (a gearbox, a rack and pinion unit, timing belt and pulley and so on) and a load to
move. In this derivation, linear movement of load is assumed, so reflected inertia on rotor is constant.
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Figure 1. Electromechanical system to be modeled, where @r is the rotor angular speed, ®L is the load shaft’s angular
speed.
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The mechanical equation that governs rotor motion is obtained applying second Newton Law on rotor axis, obtaining:

2
d-6 de (1)
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Where:

0: Is the rotor angle

Jeg: Is the equivalent inertia on rotor shaft

D,,: Is the equivalent damping coefficient for viscous and drag forces.

T Is the equivalent friction torque

Ta, Tg: Are the magnetic couples generated by the rotor, they can be written as:

T,=pn®,i, sinpd (2)
7, = pn®,,i,sin p(6— 1)

Where:

p: Is the rotor teeth number

n: Is the number of wounds on stator coils
®y: Is the rotor magnetic flux intensity
A: Is the angle between phases

iy, ig: Is the current on phase A and B.

In the stator coils we obtain the following equations:

V—riA—Lﬂ—M%+£(n¢Mcosp9)=O
dt dt dt (3)
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Where:

V: Is the supplied voltage

r. Is coil resistance

L: Is the coil self inductance

M: Ts the mutual inductance between phase A and B

These equations are combined into a set of non-linear differential equations as shows on Eq. (4)
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Where: K, = pn®,, is called Motor Torque Constant. It’s also assumed that L and M to be independent of 6, and r, J
and D to be constant

The main non-linearity of this set of equations are generated by the product of i, and iz by the respective functions of 6
and the variable behavior of T with time.



2.1. Friction Model

In order to account the effect of friction forces in the step response behavior, a simplified Coulomb’s based model
of friction behavior is developed. Although it’s simplicity this model was selected as a first approximation for the
friction effect in the EPS. The friction behavior is modeled using the piecewise function of Eq. (5).

Tf‘ = _ZTMotor lf a)R = AT/' < T/'max
(5)

, .
T, =—Tfmaxw—R‘1f\wR\>o
R

Where:

T max : Is the maximum friction torque in order to begin the motion

3. Model Parameters and simulation

In order to solve the set of non-linear differential equations showed on eq. (4) numerical computation is carried out.
A simulation graphical language (MATLAB Simulink ™ ) is used to develop such solutions using a Runge-Kutta
integration method with a variable step solver (ODE45). The initial conditions are established as follows:

2

dt dt

i,=0,i,=0
V,=Vy,Vy=0

Where V; is the rated voltage for an specific motor.

Simulations were carried out using motor parameters obtained from step motor catalogs, four different motors were
selected. Table (1). shows main parameters.

Table 1. Motor parameters used for simulation

PARAMETERS NEMA 23 NEMA 34 NEMA 106 MM.
PACSI PACSI 23 IMS SANYO
Holding Torque (Nm) 0.71 4.16 1.69 19
Detent Torque (Nm) 0.066 0.18 0.069 -
Rotor Inertia (kgm®) 1.20E-05 1.40E-04 4.60E-05 2.20E-03
Phase Resistance (ohms) 0.46 0.36 1.5 0.63
Phase Inductance (mH) 0.7 1.2 5.4 8
Rated Current (Amps) 4 6.1 24 6
Step Angle (Deg) 1.8 1.8 1.8 1.8

4. Results and discussion

A single step response analysis was performed in order to establish the influence of several mechanical and
electrical variables on the System Time Constant.(Tgym) The variables selected for this investigation were:

Electrical Time Constant
System Friction Force
Equivalent Damping Factor
Equivalent Inertia



System Time Constant is not measured directly from simulation. The direct measured variable is the Settling Time
(Ts), which is the time to reach an oscillation amplitude less than a percentage of final value ( in this case 3%). Settling
Time is easier to read from an oscillatory graph and is directly related to Tgy by Eq. (6).

T. =351z, (6)

4.1. Electrical Time Constant

Electrical Time Constant (T.=L/r) in the stator windings determines how quickly winding current reach its final
value. This is a very important parameter if we consider that motor torque is directly related to winding current and that
the model considered in this paper includes current variation within time.

Simulation where carried out varying T, from zero to approximately ten times its original value (T,). Settling Time
was measured and normalized by Settling Time when T.= T,.
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Figure 2. Effect of Electrical Time Constant on Normalized Settling Time

According to data results showed in Fig (2) the behavior of T, with T, has three phases. The first one, when T,
reaches zero, there are T, increment with T, forming a pulse with stabilizes until T/T,, reaches 0.1. The second phase is
for To/T, (where Ty, is the mechanical time constant defined as Ty, = 2J.¢/Dq) between 0.1 and 2, this is characterized
by potential reduction of T, the final phase is for T./Ty greater than two, in which Ty increases slightly with T.. Figure
(3) is used to explain the three phases behavior, in this figure a one step response is plotted in terms of angle deviation
and current rise with time for three different T./T,, values, each one correspond with a different phase mentioned above.

Figure (3) shows that T is affected by two main phenomena. One of them is the first peak amplitude which increase
with current slope and its effect on Tj is to reduce it in the way first peak is shallower. The second one is the time to
reach first peak value, which increase for greater values of T, and tend to increment Settling time. These effects are
opposite and T is a superposition of both. Finally the initial T increment observed in stage one, has been originated by
current ripple showed in black curve, which increase first peak amplitude.

The behavior above described is modeled by Eq.(7) which is adjusted for T./T.o between 0.1 and 2 because is the
interval that contains the practical variations of T..
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Figure 3. Pulse response (above) and current rise behavior (below) comparison for three different electrical time
constant. T./To, = 0.1, black curve; T./T., = 1, red curve; T./T.y, = 4, blue curve.

4.2. Friction force

Friction force effect on Settling Time was evaluated varying friction torque as a percentage of Motor Holding
Torque (Ty). Result in the four motors considered in this paper were normalized with respect to initial Settling Time
(Ty) giving out the behavior in Fig ( 4).

Results shows that Friction force effect on Ts is strongly affected by variations in T. as shows in Fig(5) (Left) which is
obtained for T./Te = 1
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Figure 4. Friction force effect on settling time for T./T¢ = 0 (Left curve) and for . T/Te = 1 (right curve) Variables are
normalized in order to exclude motor size into results.

These Variations are due to the fact that higher Electrical Time Constant represents a time delay between voltage
application and the beginning of rotor motion as shows in Fig (5) where this effect is normalized by T/T,,. But in the
other hand, higher values in Te represents a lower initial acceleration rate which is caused by low current values in the
initial phase of motion. This phenomena, combined with high friction torques tend to increase Ts again, as shown in Fig
(5) (Right) for T¢/Ty up to 0.1.



An undesired effect of friction force is a final rotor deviation from the demanded position, which is considered as
an positioning error. Final values are randomly distributed, Fig (5) (Left), but maximum error seems to follow a linear
relationship with T¢Ty. This appreciation limits the percentage of Friction Torque tolerated by a systems in terms of
the maximum error allowed in the application.

The following model is used to fit data obtained:
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Figure 5. Friction force ratio effect on starting time (Ta) normalized by inertial ratio To/T,, (Left). Final angle error
percentage versus Friction force ratio(Right)

4.3. Equivalent Damping Ratio
This factor accounts for different forces that are proportional to rotor speed, such as, air drag, viscous forces on

bearings, eddy currents and so on. The damping coefficient, Eq. (9) is used to evaluate all these factors. Settling time is
measures for § between 0.2 and 1 typical values of this parameters are 0.4 to 0.7.

D

=2 /JE:;Q‘R

Where i is the rated winding current.

(9

Ts is normalized by the Settling Time for & = 0.7, although relationship between normalized variables is
independent from this selection. Figure (6) shows results for the four motors investigated.

Additional simulations reveal that effect of this parameter on T; is not influenced by electrical time constant and the
following mathematical model gives a good adjust for the data

;S =0.6856&7%° ( 10)

s0

Equation. (10) represents an inverse relationship as outlined by Maury (1997) in their time constant equation.



4.0
35 X & PACSI NEMA 34
' O PACSI NEMA 23
3.0 o A IMS NEMA 23
2.5 A X SANYO 106 mm CIRC.
> 2.0
> » £
-2 n
*4
1.0 B,
N &
0.5
0.0
0 02 04 06 08 1 1.2
¢

Figure 6. Damping factor effect on Settling time. T; is normalized by Ty, when & = 0.7 as reference value.

4.4. Equivalent Inertia

Equivalent inertia is a very important factor, because for given motor and an inertial load it can be modified varying
transmission ratio in order to optimize response time, Riba (1987). Data were normalized by rotor inertia and varied
between 1 and 4, since the minimum inertia is the rotor inertia, the best inertial matching according with Riba C is
obtained when reflected load inertial is equal to rotor inertia (Jeq/Jo = 2). Results, Fig (7), exhibit almost a linear
relationship which is consistent with Maury (1997) Linear model. The Eq. (11) adjust the data with a R? value of
0.9993.
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Figure 7. Equivalent inertia reflected in rotor effect on settling time. Variables are normalized.

T J 0.9989
s =0.9984(J (11)
T J

s0 0

Result obtained for individual parameter influence on T are limited in terms of utilization but very useful because
that shows the part of the model consistent with linear model. Also simplifies the multivariable analysis by variables
reduction and the general mathematical model is derived from the individual observation



4.5. General Mathematical Model for Settling Time

Based on individual analysis observations, a general mathematical model for Ts was built. This model includes the
variables that are not consistent with linear model.

T, T, ) T, T, | T, . K, i
—=C| G| =—t+¢ | tC——— || —
Tm TH T;f TH Tm Kt()

Where: c¢,,...c; are model constants

Simulations were carried out following a three level factorial 3* experimental scheme. T, is now normalized by T,
in order to make a comparison with linear model. Results are shown in Table (2)

Table 2. Variable ranges and T obtained from simulation under the 27 simulation carried out in the PACSI NEMA 34
stepper motor model

Input Variables Response Input Variables Response

Sim. | T¢Ty Te/Th KKy T TyTn | Sim. | T¢Ty Te/Th KKy T, Ty/Tn
1 0.00 0.10 0.50 0.0277 3.344 15 0.03 0.60 1.50 0.0144 1.738
2 0.00 0.10 1.00 0.029 3.501 16 0.03 1.10 0.50 0.0122 1.473
3 0.00 0.10 1.50 0.0299 | 3.609 17 0.03 1.10 1.00 0.013 1.569
4 0.00 0.60 0.50 0.0251 3.030 18 0.03 1.10 1.50 0.0131 1.581
5 0.00 0.60 1.00 0.0258 | 3.114 19 0.05 0.10 0.50 8.41E-03 1.015
6 0.00 0.60 1.50 0.026 3.139 20 0.05 0.10 1.00 0.0112 1.352
7 0.00 1.10 0.50 0.0249 | 3.006 21 0.05 0.10 1.50 0.0123 1.485
8 0.00 1.10 1.00 0.0261 3.151 22 0.05 0.60 0.50 8.33E-03 1.006
9 0.00 1.10 1.50 0.0254 | 3.066 23 0.05 0.60 1.00 9.92E-03 1.197
10 0.03 0.10 0.50 0.0131 1.581 24 0.05 0.60 1.50 0.0101 1.219
11 0.03 0.10 1.00 0.0149 1.799 25 0.05 1.10 0.50 9.80E-03 1.183
12 0.03 0.10 1.50 0.0166 2.004 26 0.05 1.10 1.00 9.57E-03 1.155
13 0.03 0.60 0.50 0.0123 | 1.485 27 0.05 1.10 1.50 9.94E-03 1.200
14 0.03 0.60 1.00 0.0135 | 1.630

The coefficients are obtained by non-linear regression least squares analysis using the iterative Gauss-Newton method
included in MATLAB software with Levenberg-Marquardt modifications for global convergence.

T T —0.6299 T T T —0.0570 K 0.0776
s =0.0431] 4.7059| —L +0.0134 —0.4630—L m | < : (12)
T H H e T KtO

m

m

With a R? value of 0.991 which represents a good fit. This equation is valid for the interval used for variables in
simulation. Extrapolation is not recommended.

The behavior of Ty/T,, in terms of variable couples are shown in Fig (8) to Fig (10). Graphical analysis reveal the
most relevant variable is Ty, followed by T..
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Figure 9. Ty/T,, versus Normalized Electrical Constant (T/T,,) and Torque constant (K/Kyy) for T¢Ty= 0 (Left) and

6. Conclusions and future work
From the variable analysis obtained from-the model simulations results, we can conclude the following:

Friction force in a small percentage (no more than 5% of holding torque) have a great influence in the Time
constant reduction. Only 2.5 % of friction can reduce System Time Constant in a 50%. Higher values of friction are
non-representative in T, reduction but very harmful in terms of positional error increase.

Electrical Time Constant has not only an important influence on overall time constant, also interacts with friction
force reducing its convenient effects. Increasing T, until two times its original value, tend to reduce overall time
constant.
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Figure 10. T¢/T,, versus Normalized Friction Torque (T¢Ty) and Normalized Torque Constant (K/Ky) for three values
of Normalized Electrical Time Constant (T,/T,,), as shows in the detail.

Damping factor and equivalent inertial load effect on T don not interact with T, effect. And are consistent with
linear models. Developed by earlier authors investigation such as Maury (1997)

The model presented in this paper is not only useful to evaluate single step response, it can be used to simulate the
influence of friction and electrical time constant in the motor dynamics characteristics. For out coming research in this
area we will include: to develop a more complex friction models in the analysis and the experimental validation of the
model, the dynamics characterization under different operating modes such as full step and half-step. And the EPS
response when different velocity profiles are applied.
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