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Abstract. In many engineering applications, composite beams of various materials are the most efficient design alternative. The 
stiffness and strength of composite beams depends on the shear connection behavior between the layers. In some widely used 
systems, such as in composite steel-concrete beams and in layered wood construction connected with nails, the assumption of rigid 
interconnection between the layers is highly questionable even under service loads. Consequently there exists a movement or slip 
between the layers which can affect significantly the overall behavior of these structures. This phenomenum is called partial 
interaction. In this paper a theory is presented for a two -layered elastic member acting either as a beam or beam column and 
capable of having slip at the interface of the two layers and displacements perpendicular to the longitudinal axis of the member that 
are on the order of magnitude of the depth of beam. The force-slip relationship for the interlayer connectors is assumed to be 
nonlinear. An energy approach is employed in the formulation from which the element stiffness matrices are derived. This element 
stiffness is incorporated into a finite element analysis package. The Newton-Raphson scheme is used to solve the nonlinear system of 
algebraic equations. Tests of two-layered wood beams and beam-columns are conducted to verify the model and very good 
agreement is achieved for deflections, strains and slip between the layers. 
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1. Introduction  
 

Composite beams are the most efficiente design alternative in many engineering applications and consequently 
have been used for many years. They are usually composed of two or more different materials attached to each other by 
a mechanical connector or elastomeric adhesive. Although simply constructed, composite beams are complex to 
analyze. Their stiffness and strength depend on the shear connection behavior between the layers. In some widely used 
systems, such as in composite steel-concrete beams and in layered wood construction connected with nails, the 
assumption of rigid interconnection between the layers is highly questionable even under service loads. Consequently 
there exists a movement or slip between the layers which can affect significantly the overall behavior of these 
structures. This phenomenum is called partial interaction. Also for moderate levels of slip, the connectors or nails 
between the members exhibit nonlinear behavior. These facts have led to an extensive investigation, both experimental 
and analytical (Ko et al., 1972; Wheat et al. 1983; Kamiya 1988, e Veljkoviv 1996), of composite beams with partial 
interaction. These studies have documented very well not only the effects of the slip and the nonlinear behavior of the 
connectors in composite beams. On the other hand, most analytical models developed so far are within the framework 
of small deflection theory with some including the effects of the nonlinear behavior of the connectors.  

In this paper, a theory is presented for a two-layered elastic member acting either as a beam or beam column and 
capable of having slip at the interface of the two layers and displacements perpendicular to the longitudinal axis of the 
member that are on the order of magnitude of the depth of beam (Calixto, 1991). The force-slip relationship for the 
interlayer connectors is assumed to be nonlinear. An energy approach is employed in the formulation from which the 
element stiffness matrices are derived. This element stiffness is incorporated into a finite element analysis package. The 
Newton-Raphson scheme is used to solve the nonlinear system of algebraic equations. Tests of two-layered wood 
beams and beam-columns are conducted to verify the model. 
 
2. General Formulation 
 
2.1. Assumptions 
 

In the analysis of composite beams with partial interaction, the following assumptions are introduced: 
1 - the beam, the applied loads, and the deformations lie in a plane; the plane of the loads is a plane of symmetry 

for the beam; 
2 - the beam is assumed to be slender; that is, the length of the beam is much larger than its lateral dimensions; 
3 - transverse displacements may be finite while longitudinal displacements are infinitesimal; 
4 - only normal strains parallel to the axis of the beam are considered and they vary linearly through the depth of 

the layers; 
5 - at every section of the beam, each layer deflects the same amount and there is no separation between them. 
6 - materials are assumed to be linearly elastic except for the connectors which may be nonlinear elastic; 
7 - the geometric and elastic properties of each layer are constant along the length, but can be different from one 

layer to the other; 
8 - the shear connection between layers is continuous along the length; that is, discrete deformable connectors 

are assumed closely spaced with respect to the length of the beam to be replaced by a continuous shear 
connection; 
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9 - there is no friction at the interface between the two layers; the interaction between the layers is from the 

connector load-slip characteristics. 
 
2.2. Development of the Element Stiffness Matrix 
 

In finite element analysis, a common procedure to derive stiffness matrices is first express the total potential energy 
of the element in terms of the Lagrangian displacement coordinates. The potential energy can then be differentiated 
with respect to each degree of freedom to obtain the equilibrium equations. These equations have the element stiffness  
matrix built in them. This technique is employed next to derive the stiffness matrix for a two-layered composite beam 
with partial interaction. 

The element being developed in this case is one-dimensional and has two nodes. Each node has four degrees of 
freedom, namely: axial displacement in each layer, a rotation and a translation perpendicular to the longitudinal 
direction of the element. The element is shown in Fig. (1). 
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Figure 1. Degrees of Freedom of the Proposed Element. 
 

The nodal displacements in matrix form are: 
 

{d}t = {u1a  u2a  ya  Θa  u1b  u2b  yb  Θb}          (1) 
 

Based on the above assumptions, the strain-displacement relationship is given by: 
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where 

ui = axial displacement at midheight of layer i; 
w = transversal displacement; and 
z = one-half the depth of layer i. 

The slip can be calculated from the geometry of the deformation between the original and final positions at the 
interface of the two layers. Consequently the slip is a function of the displacements and can can be expressed as: 
 

                               ∆ =  ui+1  -  ui   -  2
1

  ( hi+1 + hi ) dx
dw

      ,            (3) 

 
where 

∆  = slip between layers i and i+1; and 
hi = depth of layer i. 

Component element   i 

Component element   i + 1 



 
The slip deformations of the connectors must take into consideration the nonlinear behavior of the connectors. 

Several expressions were developed to describe the nonlinear load-slip curve  for commonly used nails. In this study, 
Foschi’s equation (Foschi and Bonac 1977) for nails in single shear is employed. The equation is: 

F  =  (P0 + P1∆ )  
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where 

F = force in the nail; 
∆ = slip between the layers ( Eq. 3); 
k = nail initial modulus; 
P0 = intercept of the assymptote; and 
P1 = nail modulus at high slips. 

 
With the above relationships, the expression for the total potential energy for a two-layered composite beam 

becomes: 
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In the Eq. (5), the first and second terms represent the internal strain energy due to the normal strains in each layer. 

The third and fourth correspond to the effects of the finite displacements. The energy due to the deformations of the 
connectors is represented by the fifth term, in which K is the stiffness of the employed connector. The numerical value 
of this stiffness depends upon the type of the connector and its force-slip relationship. Consequently the term for the 
strain energy of the connectors is absolutely general and can be applied to any type of connector as long as its force-slip 
relationship is known. In this study, Foschi’s equation (Eq. 4) for nails in single shear is employed The last terms 
correspond to the work done by the external lateral and axial loads. 

For the displacement functions w(x) and ui(x), polynomials were chosen. Since the total energy expression contains 
only first derivatives of ui(x), a linear polynomial was selected. In the case of w(x), whose second derivative appears in 
the energy equation, a cubic approximating function is employed. This function ensures continuity of both transverse 
displacement w and its first derivative. This way, the relationships between these polynomial functions and the element 
degrees of freedom are given by: 
 

      u
1
(x) =    u 

L

x
  + u  

L

x
 - 1 1b1a 















 = {f1(x)  0  0  0  f2(x)  0  0  0 } {d} = {N1}t {d}                                                 (6a) 

      u
2
(x) =    u 

L

x
  + u  

L

x
 - 1 2b2a 
















= {0  f1(x)  0  0  0  f2(x)  0  0 } {d} = {N2}t {d}                                                 (6b) 

      w (x)  =   b 
2L

3x

L

2x
by

3L

32x
2L

23x
  +a  

2L

3x
 + 

L

22x
 -x  +ay  

3L

32x
 + 

2L

23x
 - 1 ΘΘΘΘ 













+−+













−



























  = 

                   =  {0  0  f3(x)  f4(x)  0  0  f5(x)  f6(x)} {d} = {N3}t {d} .                                                                        (6c) 
 

Substituting the displacement functions w(x) and ui(x) and its derivatives by the above relationships (Eqs. 6), the 
expression for the total potential energy, after integration and  in matrix form, becomes: 
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Using the principle of the stationary potential energy, which requires U to have a stationary value at the equilibrium 
position, we have: 
 

      δU = 0   .                                                                                                        (8) 
 
Thus 
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The above equation represents the equilibrium condition and contains the element stiffness matrix, which is symmetric 
and has four components. The first one {Kel} is the so called elastic stiffness matrix, while {KG1} and {KG2} represent 
the geometric matrices. The matrix {Kcon} represents the contribution of the interlayer slip deformation to the stiffness 
matrix. 

The element stiffness matrix shown in Eq. (9) is a secant stiffness since it operates on the total displacements and 
not on incremental ones. To find an incremental form we need to differentiate this equation one more time with respect 
to each nodal displacement. Since {KG1} and {KG2} are, respectively, linear and quadratic functions of the 
displacements, it follows: 

 

        [ ]}con{K + }G2{K  +  }G1{K  + }el{K {∆d} = {∆P}.                                             (10) 

 
The above equation is incremental and the coefficients of {∆d} represent the tangent stiffness matrix. 
 
2.3. The Finite Element Model 
 

The element stiffness was incorporated into a finite element analysis package. The program is capable of analyzing 
beams and beam-columns subjected to axial and lateral loads and includes the effects of finite displacements as well as 
non-linear behavior for the connectors. Since fixed-end actions for a two-layered beam with partial interaction have yet 
to be derived, loads can only be applied at the nodes.  

The equilibrium equations (Eq. 9 and 10) are nonlinear since the stiffness matrices are function of the 
displacements and slips. As a consequence, these equations must be solved iteratively. The method chosen is the 
Newton-Raphson scheme since it converges quickly for this type of nonlinearities. 
 
3. Experimental Program 
 

Nailed two-layered wood beams and beam-columns were constructed and tested to verify the finite element model. 
Deflections, strains and slips at several locations along the length of the beams were monitored and recorded for 
comparison with the theory (Calixto, 1991). Each beam was composed of a joist nailed to a single layer of sheathing. 
Since the primary objective of the theory is to describe the behavior of layered beams in the finite displacement range, 
the joists were placed flat; thus bending occurred through their minor axis and finite displacements could be obtained 
for a medium length beam under moderate loads. 

The beams were tested in a simply supported condition with a span of 2140 mm and subjected to a single 
concentrated load at midspan. The joists in the beams had dimensions of 140 x 37 mm and a modulus of elasticity, 
determined experimentally, of 15870 MPa. The size of the sheathing was 200 x 18 mm and had an axial and flexural 
modulus of elasticity equal  to 5060 MPa and 9110 MPa respectively. 

In the beam-column testing, the axial loads were applied only to the studs. Hence the sheathing was built 25 mm 
shorter than the studs so as to prevent the loading plates from touching the ends of the plywood. The axial loads were 
applied eccentrically in relation to the centerline of the stud; thus each beam-column was subjected to an axial force 
plus a bending moment at the ends. The beam-columns had a span of 1520 mm. The studs were 140 x 38 mm in size 
and had a modulus of elasticity of 9566 MPa. The sheathing had dimensions of 200 x 18 mm with an axial and bending 
modulus of elasticity of to 4518 MPa and 8332 MPa respectively. 

The connectors employed in both cases were 6d bright common nails spaced every 180 mm. Being an important 
factor on the behavior of layered beams with partial interaction, the load-slip curve of the 6d bright common nails was 
carefully determined through a series of simple tests from which the parameters employed in Foschi's equation (Foschi 
and Bonac 1977) were determined . An average of each one of the parameters was then calculated from which the 
values for k, P1, and P0 were 4492 N/mm, 173 N/mm  and 467 N respectively. 



 
 
4. Comparison of the Finite Element Analysis with Experiments 
 

The load versus midspan deflection relationship for beam 1 is given in Fig. (2). In this case, good agreement is still 
obtained for magnitudes of deflections substantially larger than the depth of the members since the depth of the joists 
for the beam was 38 mm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Load versus Midspan Deflection for Beam 1 
 

Figure (3) depicts the comparative results of the midspan strain for beam 1 at the bottom fiber of the joist. Good 
comparison is achieved as long as the strains remain in the elastic region. For strains above the elastic limit ( 4000 
micro), the finite element analysis predicts a stiffer behavior. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Load versus Maximum Tensile Strain on the Joist at Midspan for Beam 1 
 

The axial load versus midspan deflection relationship for beam-column 1 is presented in Fig. (4). The second order 
effects shown by the test results are very well predicted by the finite element model. The maximum measured midspan 
deflections are on the order of the magnitude of the depth of the studs used in the beam-column. 

Figure (5) presents a plot of the axial load versus the midspan strain on the stud at the interface sheathing-stud. The 
test results show a reversal in the sign of this strain from compression to tension as the load increases. The finite 
element analysis predicts very well not only the values of this strain but also the reversal in the sign of the strain. 

The results for the maximum compressive strain on stud at midspan of beam-column 1 is presented in Fig. (6). 
Good correlation with the finite element model is once again achieved. This indicates that the hypothesis of linear 
elastic behavior for layered beam components is valid up to deformations of 4000 microstrains. 
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Figure 4. Load versus Midspan Deflection for Beam-Column 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Axial Load versus Midspan Strain on the Stud at the Interface Sheathing-Stud for Beam-Column 1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Axial Load versus Midspan Strain on the Stud at the Interface Sheathing-Stud for Beam-Column 1  
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5. Concluding Remarks 
 

A consistent model for the analysis of two-layered beams with partial interaction and including the effects of finite 
displacements and nonlinear behavior for the connectors has been presented. By finite displacements it is meant 
displacements in the order of magnitude of the depth of the members. An energy formulation is applied from which the 
element stiffness matrices were derived. The element stiffness was incorporated into a finite element analysis package. 
Since the equilibrium algebraic equations are nonlinear, the Newton-Raphson scheme is used to solve them. Tests of 
two-layered wood beams and beam-columns are conducted to verify the model and very good agreement is achieved for 
deflections, strains and slips between the layers. 
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