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Abstract. In many engineering applications, composite beams of various materials are the most efficient design alternative. The
stiffness and strength of composite beams depends on the shear connection behavior between the layers. In some widely used
systems, such as in composite steel-concrete beams and in layered wood construction connected with nails, the assumption of rigid
interconnection between the layers is highly questionable even under service loads. Consequently there exists a movement or dlip
between the layers which can affect significantly the overall behavior of these structures. This phenomenum is called partial
interaction. In this paper a theory is presented for a two-layered elastic member acting either as a beam or beam column and
capable of having dip at the interface of the two layers and displacements perpendicular to the longitudinal axis of the member that
are on the order of magnitude of the depth of beam. The forcedip relationship for the interlayer connectors is assumed to be
nonlinear. An energy approach is employed in the formulation from which the element stiffness matrices are derived. This element
stiffness is incorporated into a finite element analysis package. The Newton-Raphson scheme is used to solve the nonlinear system of
algebraic equations. Tests of two-layered wood beams and beam-columns are conducted to verify the model and very good
agreement is achieved for deflections, strains and dlip between the layers.
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1. Introduction

Compodte beams are the mogst efficiente desgn dternative in many engineering applications and consequently
have been used for many years. They are usualy composed of two or more different materids attached to each other by
a mechanicad connector or elastomeric adhesive. Although simply constructed, composite beams ae complex to
andyze. Their diffness and strength depend on the shear connection behavior between the layers. In some widely used
systems, such as in composite sted-concrete beams and in layered wood congtruction connected with nails, the
assumption of rigid interconnection between the layers is highly questionable even under service loads. Consequently
there exigss a movement or dip between the layers which can affect dgnificantly the overdl behavior of these
structures. This phenomenum is caled partia interaction. Also for moderate levels of dip, the connectors or nails
between the members exhibit nonlinear behavior. These facts have led to an extensve invedtigation, both experimenta
and andyticd (Ko et d., 1972, Whesat e a. 1983, Kamiya 1988, e Vdjkoviv 1996), of composite beams with partia
interaction. These studies have documented very well not only the effects of the dip and the nonlinear behavior of the
connectors in composite beams. On the other hand, most andyticd models developed so far are within the framework
of small deflection theory with some including the effects of the nonlinear behavior of the connectors.

In this paper, a theory is presented for a two-layered eastic member acting ether as a beesm or beam column and
cgpable of having dip at the interface of the two layers and displacements perpendicular to the longitudind axis of the
member that are on the order of magnitude of the depth of beam (Calixto, 1991). Tre forcedip relationship for the
interlayer connectors is assumed to be nonlinear. An energy approach is employed in the formulation from which the
dement diffness matrices are derived. This dement diffness is incorporated into a finite element analysis package. The
NewtorntRaphson scheme is used to solve the nonlinear system of dgebraic equations. Tests of twolayered wood
beams and beam-columns are conducted to verify the mode.

2. General Formulation
2.1. Assumptions

In the anadlysis of composite beams with partia interaction, the following assumptions are introduced:

1 - the beam, the applied loads, and the deformations lie in a plane; the plane of the loads is a plane of symmetry
for the beam;

2 - the beam is assumed to be dender; that is, the length of the beam is much larger thanitslateral dimensions;

3 - transverse displacements may be finite while longitudind displacements are infinitesmad;

4 - only normd srains pardlel to the axis of the beam are consdered and they vary linearly through the depth of
the layers;

5 - a every section of the beam, each layer deflects the same amount and there is no separation between them.

6 - materids are assumed to be linearly eastic except for the connectors which may be nonlinear dadtic;

7 - the geometric and eadtic properties of each layer are congtant aong the length, but can be different from one
layer to theother;

8 - the shear connection between layers is continuous dong the length; that is, discrete deformable connectors
ae assumed closly spaced with respect to the length of the beam to be replaced by a continuous shear
connection;
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9 - there is no friction at the interface between the two layers, the interaction between the layers is from the
connector load-dip characterigtics.

2.2. Development of the Element Stiffness Matrix

In finite dement analysis, a common procedure to derive siffness matrices is first express the tota potentiad energy
of the dement in terms of the Lagrangian displacement coordinates. The potentiad energy can then be differentiated
with respect to each degree of freedom to obtain the equilibrium equations. These equations have the dement stiffness
matrix built in them. This technique is employed next to derive the giffness matrix for a two-layered composite beam
with partial interaction.

The dement being developed in this case is onedimensond and has two nodes. Each node has four degrees of
freedom, namdy: axid displacement in each layer, a rotation and a trandation perpendicular to the longituding
drection of the eement. The dement isshown in Fig. (1).
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Figure 1. Degrees of Freedom of the Proposed Element.
Thenodd displacementsin matrix form are:
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Based on the above assumptions, the strain-displacement relationship is given by:
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where

u; = axia displacement at midheight of layer i;

w = transversal displacement; and

z = one-hdf the depth of layer i.

The dip can be cdculated from the geometry of the deformation between the origind and find postions at the

interface of the two layers. Consequently the dip isafunction of the displacements and can can be expressed as.
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where
D =dip between layersi and i+1; and
hy = depth of layer i.



The dip deformations of the connectors must teke into consideration the nonlinear behavior of the connectors.
Severd expressons were developed to describe the nonlinear load-dip curve  for commonly used nals. In this study,
Foschi’ s equation (Foschi and Bonac 1977) for nailsin single shear isemployed. The equation is:

F = (Po+PID) el e@?%% , @

where
F =forceinthenall;
D=dip between thelayers ( Eq. 3);
k =nail initid modulus;
Po = intercept of the assymptote; and
P; = nail modulus & high dips.

With the above rdationships, the expresson for the tota potential energy for a two-layered composite beam
becomes:
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In the Eq. (5, the first and second terms represent the internal strain energy due to the norma strains in each layer.
The third and fourth correspond to the effects of the finite displacements. The energy due to the deformations of the
connectors is represented by the fifth term, in which K is the stiffness of the employed conrector. The numerica value
of this diffness depends upon the type of the connector and its force-dip relationship. Consequently the term for the
strain energy of the connectors is absolutely general and can be applied to any type of connector as long as its forcedip
relationship is known. In this study, Foschi's equation (Eq. 4) for nals in single shear is employed The last terms
correspond to the work done by the external lateral and axid loads.

For the displacement functions w(x) and u;(x), polynomias were chosen. Since the totd energy expresson contains
only first derivatives of u(x), a linear polynomia was sdected. In the case of w(x), whose second derivative appears in
the energy eguaion, a cubic gpproximating function is employed. This furction ensures continuity of both transverse

displacement w and its firgt derivative. This way, the reaionships between these polynomial functions and the eement
degrees of freedom are given by:
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Subdgtituting the displacement functions w(x) and u(x) and its derivatives by the above reationships (Egs. 6), the
expression for the tota potential energy, after integration and in matrix form, becomes:
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Using the principle of the stationary potential energy, which requires U to have a dationary vaue a the equilibrium
position, we have:
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Thus
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The above equation represents the equilibrium condition and contains the element giffness matrix, which is symmetric
and has four components. The firs one {Kq} is the so cdled dadic giffness matrix, while {Kgy} and {Kgg} represent
the geometric matrices. The matrix {Ken} represents the contribution of tre interlayer dip deformation to the dtiffness
metrix.

The dement stiffness matrix shown in Eqg. (9) is a secant stiffness since it operates on the total displacements and
not on incrementad ones. To find an incrementd form we need to differentiate this equation one more time with respect
to each nodad disgplacement. Since {Kgi} and {Kgz ae respectively, linear and quadratic functions of the
displacements, it follows:

KK g} + {K gp} + {K gp} HK ont]{D} ={ P} (10)
The above equation isincrementa and the coefficients of {Dd} represent the tangent stiffness matrix.

2.3. The Finite Element Modé

The dement diffness was incorporated into a finite dement analysis package. The program is capable of andyzing
beams and beam-columns subjected to axid and latera loads and includes the effects of finite displacements as wel as
noninear behavior for the connectors. Since fixed-end actions for a twolayered beam with partid interaction have yet
to be derived, lcads can only be applied at the nodes.

The equilibrium eguations (Eq. 9 and 10) are nonlinear snce the diffness matrices are function of the
displacements and dips. As a consequence, these equations must be solved iterativdly. The method chosen is the
NewtonRaphson scheme since it converges quickly for thistype of nonlinearities.

3. Experimental Program

Nailed two-layered wood beams and beam-columns were constructed and tested to verify the finite dement mode.
Deflections, drains and dips a severd locations dong the length of the beams were monitored and recorded for
comparison with the theory (Cdixto, 1991). Each beam was composed of a joist naled to a single layer of sheathing.
Since the primary objective of the theory is to describe the behavior of layered beams in the finite displacement range,
the joists were placed fla; thus bending occurred through their minor axis and finite digplacements could be obtained
for amedium length beam under moderate loads.

The beams were tested in a smply supported condition with a span of 2140 mm and subjected to a single
concentrated load a midspan. The joids in the beams had dimensons of 140 x 37 mm and a modulus of dadicity,
determined experimentally, of 15870 MPa The size of the sheathing was D0 x 18 mm and had an axid and flexurd
modulus of elagticity equal to 5060 MPaand 9110 MParespectively.

In the beam-column testing, the axia loads were applied only to the studs. Hence the sheathing was built 25 mm
shorter than the studs so as to prevent the loading plates from touching the ends of the plywood. The axid loads were
applied eccentricdly in relation to the centerline of the stud; thus each beamcolumn was subjected to an axiad force
plus a bending moment a the ends. The beamcolumns tad a span of 1520 mm. The studs were 140 x 38 mm in size
and had a modulus of dadticity of 9566 MPa The sheathing had dimensons of 200 x 18 mm with an axid and bending
modulus of elagticity of to 4518 MPaand 8332 MParespectively.

The connectors employed in both cases were 6d bright common nails spaced every 180 mm. Being an important
factor on the behavior of layered beams with partid interaction, the load-dip curve of the 6d bright common nails was
caefully determined through a series of simple tests from which the parameters employed in Foschi's equation (Foschi
and Bonac 1977) were determined . An average of each one of the parameters was then cdculated from which the
vauesfor k, Py, and Pg were 4492 N/mm, 173 N/mm and 467 N respectively.



4. Comparison of the Finite Element Analysiswith Experiments

The load versus midspan deflection reaionship for beam 1 is given in Fig. (2). In this case, good agreement is dill
obtained for magnitudes of deflections substantiadly larger than the depth of the members since the depth of the joists
for the beam was 38 mm.
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Figure 2. Load versus Midspan Deflection for Beam 1
Figure (3) depicts the comparative results of the midspan strain for beam 1 a the bottom fiber of the joist. Good

omparison is achieved as long as the drains remain in the eadtic region. For grains above the dadtic limit ( 4000
micro), the finite dement analysis predicts a stiffer behavior.
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Figure 3. Load versus Maximum Tensile Strain on the Joist at Midspan for Beam 1

The axid load versus midspan deflection relationship for beamcolumn 1 is presented in Fig. (4). The second order
effects shown by the test results are very well predicted by the finite dement modd. The maximum measured midspan
deflections are on the order of the magnitude of the depth of the studs used in the beam-column.

Figure (5) presents a plot of the axid load versus the midspan strain on the stud at the interface sheathing-stud. The
test results show a reversd in the sgn of this drain from compresson to tenson as the load increases. The finite
element analysis predicts very well not only the values of this strain but aso the reversal in the sign of the train.

The results for the maximum compressive strain on stud & midspan of beam-column 1 is presented in Fig. (6).
Good corrdation with the finite eement model is once again achieved. This indicaes that the hypothesis of linear
eadtic behavior for layered beam componentsis vdid up to deformations of 4000 micrograins.
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Figure 4. Load versus Midspan Deflection for Beam-Column1
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Figure 5. Axid Load versus Midgpan Strain on the Stud at the I nterface Sheathing Stud for Beam-Column 1
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Fgure 6. Axid L oad versus Midspan Strain on the Stud at the Interface Sheathing Stud for Beam-Column 1



5. Concluding Remarks

A consgtent mode for the andyds of two-layered beams with partid interaction and including the effects of finite
digplacements and nonlinear behavior for the connectors has been presented. By finite digplacements it is meant
displacements in the order of magnitude of the depth of the members. An energy formulation is applied from which the
eement diffness matrices were derived. The dement tiffness was incorporated into a finite dement analysis package.
Since the equilibrium dgebraic eguations are nonlinear, the Newton-Raphson scheme is used to solve them. Tests of
two-ayered wood beams and beam-columns are conducted to verify the mode and very good agreement is achieved for
deflections, strains and dips between the layers.
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