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Abstract. A method using the pseudo-compressibility technique is presented to solve the Reynolds-averaged Navier-
Stokes equations for unsteady reacting flows. The combustion process is modeled using a Bray-Moss-Libby (BML) model.
Turbulence closure is achieved through a two-equation k — € model using classic and semi-deterministic approaches.
The domain is discretized using cell-vertex, hybrid unstructured mesh techniques. To stabilize the equations, artificial
dissipation is added and it is suitably modified to produce a stable system even with the adopted turbulence model. Time
accuracy s recovered using an additional time derivative of conserved variables. The solution in each physical time step
is obtained with a three stage Runge-Kutta scheme. The method is tested for a turbulent channel flow and the unsteady
flow in the wake of a triangular bluff body. A qualitative evaluation is also carried out for the reactive case. The results
present good correlation with experimental data.

Keywords: Turbulent flow, combustion, bluff body, finite volume method, unstructured hybrid grid, pseudo-compressibi-
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1. Introduction

The potentialities and the use of computational fluid dynamics in our days are undoubtedly increasing
both for academic research as well as for industrial application. Along the last 40 years, with help from the
increase in digital computer power, more and more detailed physical phenomena and complex geometries can
be investigated in our days. In this context, the present work is concerned with the simulations of turbulent
combustion flows. As a large part of existing reactive flows of practical applications are in low Mach number
regimes, it is necessary to choose a correct method to solve the governing equations at these conditions. On the
other hand, a considerable number of numerical methods were developed in the three last decades especially
for compressible flows. Hence, the pseudo-compressibility preconditioning technique appears as a good option
because it results in a method only slightly different from those for the compressible regime. Furthermore,
previous work (Bruel et al., 1996, Corvellec, 1998, and Dourado et al., 2002a) has shown that the pseudo-
compressibility technique is equally efficient for structured as well as for unstructured meshes, and steady and
unsteady reactive flows at very low Mach number.

On the physical side, there is a large number of models and approaches to model the combustion process
and turbulence. For premixed reagent combustion cases, the model proposed by Bray et al. (see Bray et al.,
1984), has been improved and its performance is good with low computational cost. The main dependence of
the combustion model success comes from the turbulent field characterization which leads to more realistically
calculated combustion process. Several approaches are present in the literature for turbulence closure for the
Reynolds-averaged Navier-Stokes equations. For models based in the Boussinesq hypothesis, the two-equation
k—e model (Jones and Launder, 1972) is one of the most popular and for some flow configurations its performance
is satisfactory for separated flow. Other approaches are present in literature which seek to calculate, using k — €
model, unsteady separated flow, such as the semi-deterministic one, presented in the work of Ha Minh and
Kourta, 1993.

The aim of the present work is to perform a validation of a numerical method to solve the Navier-Stokes
equations for reacting flows, using a pseudo-compressibility preconditioning technique, on a finite volume method
using hybrid unstructured meshes for spatial discretization. The present method was already validated by the
authors, both for steady (see Dourado et al., 2002a) and unsteady flow regimes (see Dourado et al., 2002b), for
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a freely propagating plane flame. The turbulence is modeled with the help of a two-equation model using both
standard, or classical, and semi-deterministic approaches. The k — ¢ model proposed by Jones and Launder,
1972 is adopted and the semi-deterministic model proposed by Ha Minh and Kourta, 1993, is also considered.
To model the combustion process, a Bray-Moss-Libby flamelet combustion model (see Bray et al., 1984), based
on a progress variable and an one step reaction with a mean reaction rate is adopted. In the present work, two
test cases are considered: the entrance channel flow upstream of the bluff-body and the wake of a triangular
bluff body located inside this channel. These test cases are confronted with the experimental results present
in the experimental work of Sanquer, 1998. In the investigation carried out here, some integral parameters are
compared with experimental data.

2. Physical Modeling
2.1. Combustion Model

The combustion model is based in the Bray-Moss-Libby model, hereafter referred to as BML model (see Bray
et al., 1984) for premixed combustion which assumes an isenthalpic flow with infinitely fast chemical reactions.
This model gives a reaction rate for the reaction progress variable, ¢, which is considered to assume only two
values: ¢ = 0 in the unburnt mixture and ¢ = 1 in the fully burnt products. This variable plays the role of a
reduced temperature, i.e., c = (T' = T,)/(Ty — T;), where T, is the temperature of the reactants and T} is the
temperature of the burnt products. With the assumptions imposed by the BML model, with the help of the
heat release parameter, x, defined as x = (Tp — 1)/, and with the use of Favre averages (Favre, 1965), the
equation of state is rewritten in terms of ¢, the Favre averaged progress variable, as
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With the hypothesis of an unitary Lewis number, the governing equation for the mean progress variable
plays the role of the energy equation and it can be written in the generic form

L(po)=w , (2)

where the L operator regroups the convective and diffusive operators, and p is the density. The mean reaction
rate, w, appearing in the above equation may take different forms depending on the version of the combustion
model. In the present case, w, is modeled using the expression given in Bray, 1990, which take into account the
intermittency, curvature and stretch of a laminar flame. This expression is written as

&1(1 — &) )

where Ka is the Karlovitz number given as
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In above equation, U? is the non-stretched laminar flame speed and v; is the laminar kinematic viscosity
coefficient. Other parameters are defined in the next sections. This combustion model is also detailed in Bailly,
1996, and it is adopted in this work for preliminary comparisons.

2.2. Turbulence Model

In the experimental work presented in Sanquer, 1998, all flows around the bluff body investigated have an
unsteady behavior. By consequence, this flow characteristic places a more difficult requirement in the selection
of turbulence model to simulate the proposed case. In some numerical investigations of flows around bluff bodies,
the use of Boussinesq’s approach to model the Reynolds stresses, jointly with a k& — € to model the turbulence
parameters, gives a steady solution as presented in work of Franke and Rodi, 1991, Bailly, 1996, and Raffoul
et al., 1997, while other authors (see Franke and Rodi, 1991, Raffoul et al., 1997, Mohammadi and Medic, 1996)
show that it is possible to capture vortex shedding using this approach. A large number of these referred papers
use the standard two-equation £ — € model given by Jones and Launder, 1972, based in the kinetic turbulent
energy k and its dissipation rate €. In addition, the work of Ha Minh and Kourta, 1993, Ha Minh, 1999, Billet,
1994, present an approach based in phase-averaging techniques and denominate semi-deterministic turbulence
modeling or Large Eddy Simulation using time filtering. The latter authors show that, to calculate an unsteady
flow, it is necessary to define a time-step small enough to capture deterministically the large structure while



Table 1: Constant values adopted for Eq. (5).

Turb. Model | C,, (Standard) | C,, (Semi-deterministic) | Ce1 | Ce2 | Ces
Standard 0.09 0.02 144 1 192 | 1.44

the small structures are modeled by the turbulence model. Thus, this rule is enforced on calculations realized
in this work.

Hence, in the present work the well know two-equation turbulence model given by Jones and Launder, 1972,
is adopted and written in the classical form, with the help of Favre averages (Favre, 1965) as
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where k and € are the turbulent kinetic energy and its dissipation rate, respectively, and P} represents the
turbulence production term given by
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and Gy, represents the turbulence production connected with the density variation. This term is modeled as
present in Bailly, 1996, to validate the reactive calculations of the present work. In that reference, this term is
modeled based on gradient-type hypothesis for closure such as to result in the following expression
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where p is the static pressure, u; and z; are the velocity and Cartesian axis in tensorial notation, respectively.

The turbulent viscosity coefficient, ur, is based on dimensional analysis given by pur = ﬁCul::‘" /€ with C,
being an experimental constant. A discussion on the value of this constant as a function of approach, i.e.,
standard or semi-deterministic, is found in Ha Minh and Kourta, 1993, and Ha Minh, 1999. The values of the
constants present in the Eq. (5) are given in Tab. 1.

3. Governing Equations

The set of governing equations is given by the Reynolds-averaged Navier-Stokes equations, with continuity
equation modified by the pseudo-compressibility approach, given by (Dourado et al., 2002b)
op 19p opu;
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with the balance equation for reaction progress variable given by Eq. (2). Further, the two additional turbulence
equations given by Eq. (5) must be considered. As presented in Dourado et al., 2002a, and Bruel et al., 1996, the
use of the pseudo-compressibility changes the sound speed such as it is rescaled by the pseudo-compressibility
parameter, 3, which defines, then, a pseudo-sound speed given by

a=\lu’+5, 9)

where |u| represents the magnitude of the velocity.

The governing equations are written in the standard form used for compressible, dual-time step methods for
computational aerodynamics. The interested reader is referred to Dourado et al., 2002a, and Dourado et al.,
2002b for details. Furthermore, in the present work, the turbulent transport terms, that is the Reynolds stresses,
ﬁug’uy , need a closure. For the momentum equations, the Reynolds stress tensor can be modeled based on the
Boussinesq turbulent viscosity concept, by the following relation:
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where £ is calculated with the help of Eq. (5).

The gradient hypothesis is adopted for the term ﬁuf"\g” , present in the equation for the reaction progress
variable, Eq. (2), considering an analogy with Fick’s law (see Bray et al., 1984),
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where the turbulent Schmidt number S¢; is given by Sc¢; = 14/ D;. Here, Dy is the turbulent diffusion coefficient,
and the hypothesis of unitary Lewis number is adopted. Additionally to the formulation present by Dourado
et al., 2002a, and Dourado et al., 2002b, in the present work the laminar stresses are taken into account and
the laminar viscosity is calculated using Sutherland’s laminar viscosity law.

4. Temporal and Spatial Discretization

The spatial discretization adopted in this work consists on an overlapped cell vertex approach, initially pro-
posed by Mavriplis et al., 1989, and adapted to hybrid unstructured grid by Dourado et al., 2000, and Dourado
et al., 2002a, for inert and reactive flows. The physical time-depending properties, @), and the preconditioned
properties, ¢, are stored at the vertices of the elements. The control volume for a given vertex, 4, is defined by all
elements having 7 as a common vertex. The boundary flux integral in the governing equation is approximated,
as usual in the cell vertex finite-volume formulation, using the trapezoidal rule of integration, which can be
shown to be equivalent to a piecewise linear Galerkin approximation with a lumped mass matrix ( see Mavriplis
et al., 1989). Although better shock resolution and the capture of other discontinuities, as thin flames, can
be obtained using some upwind-based schemes, the present formulation is generally better suited for explicit
schemes and it has lower computational cost. Further details of the numerical implementation of the spatial
discretization scheme can be found in Dourado et al., 2002a, and Dourado et al., 2002b.

The time accurate unsteady solution of the governing equations consists in seeking a steady solution on a
pseudo-time for each physical time step. The pseudo-compressibility method adopted in this work for reactive
flows is based on the solution of the time-dependent Navier-Stokes equations jointly with the progress variable
balance equation and the turbulence modeling equations, written in conservative form. Thus, to find the steady
state within each physical time step, it is necessary to solve the discretized system of equations taking the
physical time derivative as a source term, given as

1 oQ
St =— —dV 12
v/ ot (12)
In this way, the set of discretized, coupled equations can be written as
dg; .
ViE +[C (@) = Dv (@) = Da (4)] = S (@) = St (@) ,i=1...n. (13)

where C(q) is the residual of the convective inviscid term, D, (g) represents the viscous dissipation term and
D,(q) is the artificial dissipation. V; represents the area of the control volume ¢, in two-dimensional discretiza-
tion.The source terms related to the reactive Navier-Stokes equations and turbulence modeling are represented
by S(q) and St(q) is the physical time related source term. 7 represents the pseudo-time.

In the present work, an explicit, three-stage, hybrid Runge-Kutta time-stepping scheme is adopted for time
integration in pseudo-time. The reason for adopting this scheme lies with its simplicity, robustness and low
computational cost which leads to the resulting scheme having an adequate performance on an unstructured
grid. Thus, the scheme to advance the solution on pseudo-time step, proposed by Manzari et al., 1998, is here
implemented in the form

(0)
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Here the operators C', D, and S are created using the properties vector qz(”_l) from stage k — 1, while the

artificial dissipation term is calculated only in the first stage and held constant throughout the next stages. The
coefficients adopted in the Eq. (14) are: oy = 0.6, as = 0.6 and a3 = 1.0. The physical time derivative in Eq.
(12) is discretized by a second order implicit scheme given by

@ n+l,k—1 _ 3Qn+1,nfl _ 4Qn _ anl
ot 2A¢ ’

(15)

where ¢ represents the physical time.

This time discretization, Eq. (15), is adopted both by Rogers and Kwak, 1990, and Corvellec, 1998, on a
pseudo-time marching implicit scheme context. In the present work, it was adapted in order to be used with the
pseudo-time marching explicit scheme given by Eq. (14). The physical source term S is calculated at each step
of the Runge-Kutta scheme above. Kunz and Lakshminarayana, 1992, present a discussion about the behavior
of an explicit scheme in terms of how the source term is calculated. They conclude that this term can be
calculated only in the first step of the Runge-Kutta scheme.



5. Artificial Dissipation

Since the spatial discretization adopted here can be considered a central-difference-like scheme, artificial
dissipation is required to couple the equations and stabilize the system of the discretized equations. Additionally,
this system needs more dissipation in the presence of high gradients such as a shock or other phenomena which
could lead to unstable conditions. An appropriated fourth difference biharmonic dissipation term is added to
recouple the discretized equations. The additional dissipation necessary to correctly capture shocks and/or
other high property gradients is a second difference term. Thus, the adopted artificial dissipation operator used
here is a blend of an undivided Laplacian and a biharmonic operator of the preconditioned properties vector g,
which can be written as

M] , (16)
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where A(q) = k'¥q—Ek®V?2q, and nn is the number of nodes locate on the boundary of the i-th control volume.
The A coefficients are added to adjust this terms for highly stretched meshes and preserve the scheme accuracy
in viscous dominated regions and its form can be found both in previous work (see Dourado et al., 2000, and
Dourado et al., 2002a) as well in Mavriplis et al., 1989. Originally, the &¥'®) coefficient was proportional to an
undivided Laplacian of the pressure, which was constructed as the summation of the pressure differences along
all edges defining the i-th control volume. The use of pressure as property to ponder the artificial dissipation
term is logically adopted in flows with the presence of shocks. However, as the formulation adopted here is
essentially for incompressible flow, this term was changed to capture high gradients of other properties. The
authors observed that the proposed method became more stable when this switch is calculated as differences
of k, instead of p. Equally, on semi-deterministic turbulence modeling approach, the use of € as the sensor
property of artificial dissipation switch is the best choice to allow the proposed scheme to be able to calculate
these types of configurations evaluated here. Thus, the calculations of flow around bluff-bodies performed here
use k as the sensor property and the final expression for the coefficient k'(®) is expressed as

B — k@) Zlﬁ? |y, — kil ‘ (17)
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For semi-deterministic calculations, k is replaced by e. The constant which defines the level of fourth order
dissipation k) is equal to 1 /256 for all calculations presented in this work. This value has been adequate and
ideal both for compressible and incompressible schemes, giving stability, good convergence and practically no
influence on the physical terms of the discretized governing equations, indicated in previous work (see Dourado
et al., 2002a, and Dourado et al., 2002b). The k® constant defines the level of the second difference operator
and numerical experiments show that its value equal to 0.05 is ideal because it produces enough dissipation on
critical regions and it does not add undesirable dissipation in other regions of the computational domain. The
channel flow calculations considered as test cases in the present work had this constant k() set equal to 0. For
the bluff body calculations, k() was set to 0.05.

6. Test Cases Description and Boundary Conditions

A sketch of the test cases is presented in Fig. 1 with it pofes
some of the main dimensions indicated. The channel
flow simulated here consists of the entrance channel loc-
ated upstream the obstacle. And the obstacle test case
consists of whole channel flow including the entrance | Buachame
channel and the channel path with the obstacle. The
physical height of the channel is equal to H = 0.0288 m,
and the obstacle base, d, have its size such that the blockage ratio, d/H, is equal to 33%. In the entrance channel
test case, the inlet profiles for the longitudinal velocity component, u, for k£ and for € are imposed using fitted
polynomial equations based on the experimental data from Sanquer, 1998. The maximum velocity indicated in
the experimental data at the channel axis is equal to 3.1 m/s. Also for this boundary, the transversal velocity
component, v, is imposed equal to zero and the inlet static pressure, p, is calculated from the solution of the
governing equations. The entrance test case is used to supply property profiles obtained numerically, too. Thus,
for the bluff-body test case, the inlet boundary conditions for u, & and € are profiles at the outlet of the entrance
channel, acquired from the simulations presented here.

The mesh near the wall is displaced from the respective actual boundaries as presented in Fig. 1, both for
the entrance channel test case and the bluff-body one. For the channel wall, the virtual wall is placed away
from the wall at dwqir,channet = 0.0036 m and for the obstacle wall the virtual wall is placed away from it at
Owail,obstacte = 0.0005 m. The wall laws are imposed in those boundaries using the equilibrium hypothesis for
turbulence production and dissipation. Further details are presented in Mohammadi and Medic, 1996. At the
outlet boundary condition, the static pressure, p, is imposed and all other properties are obtained from the

{//vgltlut?loundaries b~ Outlet
o boundaryf Z—|

I

wall

f
Figure 1: Sketch of obstacle test case.



Table 2: Bluff body test case designation according the turbulence model and wall law approaches used.

Wall Law
Approach Logarithmic | Reichardt
Standard a b
Semi-deterministic N/E c

solution of the governing equations. In the reactive test case, the fuel considered is commercial propane and it
is homogeneously premixed with air such that the equivalence ratio is ¢ = 0.65. Here, U? is considered equal
to 0.256 m/s, and x = 5.15, following Bailly’s, (1996) work. In this test case, ¢ is imposed equal to zero in the
inlet.

7. Results

7.1. Entrance Channel

Mesh for Entrance Channel - 70 x 50 div.

o 35
*®I" 3621 Nodes, 3500 Quad. Elements g Entrance Channel Flow
r 3621 Overlaped Volumes 325 Logarithmic and Reichardt Wall Laws
0.025 F
3r
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001} 2 f- X=0.3 (Logarithmic Wall Law)
r il-Sanquer
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Figure 2: Mesh of entrance channel composed only by  Figure 3: Mean velocity profile at channel exit and
quadrangular elements. experimental results from Sanquer, 1998.

The first test case calculated with the proposed method is the entrance channel located before the bluff
body and it is considered as a two-dimensional problem. This hypothesis is valid because the flow does not
exhibit significant variations in the channel spanwise direction, except near the walls, as indicated by the
experimental work of Sanquer, 1998. The domain is discretized using only quadrilateral elements since they
produce better solutions in meshes with high aspect ratio elements as discussed in Dourado et al., 2000, and
Dourado et al., 2002a. The adopted mesh is shown in Fig. 2. The converged solutions are achieved after almost
4000 iterations, and a single steady solution in the pseudo-time is sought. Therefore the source term of the
physical time derivative in Eq. (15) is set equal to zero. The pseudo-time step, A7, is calculated setting the
Courant-Friedrichs-Lewis (CFL) number equal to 1.5. Both results calculated with the present method are
shown in the Fig. 3 jointly with the experimental results from Sanquer, 1998. The Reynolds number based in
the height of the channel, H = 2h, and the maximum velocity at the axis of the channel, y = h, is equal to
6684. The height of the channel is equal to 0.0288 m. It is possible to see an excellent agreement between the
numerical results and the experimental data for both wall laws. This is the case named I1, inert, presented in
Sanquer’s, (1998) work. The standard turbulence model approach was used to calculated these channel flows.

7.2. Flow Around Bluff Body

The second test case consists of the flow in a channel with a triangular, equilateral, bluff body, with its vertex
pointed to the entrance located at symmetry axis of the channel. The bluff body base, d, is such as to have a
channel blockage equal to 33%. The mass flow is identical to the channel flow test cases. The Reynolds number
based on the obstacle base size and axis velocity is equal to 2240. Two approaches for turbulence modeling
were adopted to calculate this test case, the classic and the semi-deterministic as discussed in the Sec. 2.2. Two
wall laws were used to calculated this test case and they are discussed in the forthcoming paragraphs. Table 2
shows the nomenclature used for each numerical case. The numerical parameters for each test case performed
here for the bluff body flow are given in Tab. 3.

The mesh used to discrete the a and b test cases is shown in Fig. 4, together with the detail of the mesh
around the obstacle. This is a hybrid mesh constructed with quadrilateral and triangular elements. In the
entrance and exit regions of the channel, the quadrilateral element is preferable due to reasons explained before.
Around the body, the strip construct by triangles with high aspect ration helps to discrete this region. Strip
mesh generation procedure is a technique used by Saltel and Hecht, 1995, in their mesh generator EMC2 which



Mesh (I) and Detail Near the Bluff Body Logarithmic Wall Law = FET(pu)

008

3 1 @ x=0.0753
0045 - F
ook f=109 Hz <
0.04F s b 0.5 0,003,
F oo . 1 0002
0.035 | o0, O
E 0 ?Em 0 B °
. 003fF = [
£ I 2
,0.5 -
a1k
0

_,

0
X [m] Figure 5: Component in X direction of momentum at
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lar bluff body. approach for k — e model and the FTA of last 128ms.
Table 3: Numerical parameters adopted in bluff body test case.
AT calc. Pseudo-time Conv. Criteria | Art. Dis.
Case Timestep CFL, | as func. of At log RHS < | Nmax Iter. switch by
a A7 Const. 2 CFL, 10~4 —4.25 3000 VEk
b CFL, = const. | 1.5 Spatial. var. | 10~* —4.25 3000 Vk
c CFL,; = const. | 1.3 Spatial. var. | 5 x 107° | —4.2 3000 Ve
Reactive | A7 Var. 0.5 CFL, 5x107° | —4.25 3000 Vk

was used to generate all grids in this work. The c test case needs a finer mesh than the other test case due to
high gradients of k, ¢ and vr. The mesh for this case is a refinement of the mesh presented in the Fig. 4, for
the other cases.

Numerical experiments performed in the context of the present work demonstrated that steady solutions
are not possible for any of the test cases here considered. During the iteration process to seek a pseudo-time
converged solution, vortex shedding appears. Obviously, they do not have any physical meaning due to the
preconditioning of the equations. It should be understood that, for steady calculations, the physical time
derivative is neglected, i.e., S = 0. The simulations performed here, in an attempt to obtain steady solutions,
indicated that the maximum residue typically reaches values below 10~ and, afterwards, starts to increase
and oscillate, indicating the presence of vortex shedding. This situation is typically achieved in 3000 — 5000
iterations in the pseudo-time marching.

Once it was clear that all computations were unsteady, the approach used in the present work was to use
the calculations “converged” in the pseudo-time, in the sense described in the previous paragraph, as initial
conditions for the truly unsteady simulations. For the true unsteady calculations, the convergence criterion
within each physical time step was to force the logarithm of the maximum residue to be smaller than —4.25 for
all control volumes. The calculations for the a case were performed up to the physical time of 400 ms and the
history of the momentum component in longitudinal direction along the axis of the channel, at X = 0.07529
which correspond the experimental length of the recirculation zone is presented in Fig. 5. In the same figure,
the Fourier temporal analysis (FTA) of the last 128 ms is plotted. The vortex shedding frequency found is equal
to f = 109 Hz. This result indicates a Strouhal number St = fd/U,,;s equal to 0.3375. In the experimental
data, the Strouhal number is equal to 0.276.

In Fig. 6, contours of mean velocity magnitude and streamlines for six different instances in a given period are
shown. In Fig. 7 the evolution of the mean longitudinal velocity component along the axis of the channel, behind
the back face of the obstacle, is presented. This face is locate at X = 0.0558 m and the end of the recirculation

t=293 ms t=297m

Figure 6: Mean velocity magnitude and streamline at six times in a period of 87 Hz.



Table 4: Bluff body test case integral parameters.

[IHz] | fd/Uszis | X1 m] | AXy [m] | AXp/d
Std. Turb. Model w/ Log. WL 109 0.3375 0.0789 | 0.0231 2.41
Std. Turb. Model w/ Reichardt WL | 87 0.2694 0.078 0.0222 2.31
Semi-Determ. w/Reichardt WL 161 0.4986 0.0719 | 0.0161 1.68
Experimental (Sanquer, 1998) 89 0.276 - 0.0204 2.12

zone is achieved at X = 0.0789 m. It results in a length of the recirculation zone equal to AXy = 0.02313 m.
Table 4 summarizes the integral parameters for bluff body test case calculated here with the present method.

The history of the longitudinal component of momentum during 305 ms of calculations of the b case at
X = 0.07529 m is plotted in Fig. 8. The improvement of the main frequency of vortex shedding calculations
can be observed as shown in Tab. 4. The results in this case are essentially equal to the experimental data. The
present work confirms the expectation of Strouhal number improvement using a more sophisticated wall law
as suggested by Mohammadi and Medic, 1996. A better mean value is also obtained in the evolution of mean
longitudinal velocity component at axis of the channel, behind the obstacle, using the Reichardt wall law and
standard approach for k£ — € model, shown in Fig. 9. Based on the results presented in this figure, it is possible
to find the dimensionless length of recirculation zone as equal to 2.31, which is 9% larger than the experimental.
Hence, this indicates a fairly good agreement between the calculations performed with the present method and
the experimental data.

The proposed method was also used to test an other approach, called “semi-deterministic” modeling. The
history of the velocity component in the X direction along the axis of the channel, behind the obstacle is shown
in Fig. 10.The frequency of vortex shedding in this cases is equal to 161 Hz. This value is completely different
from the experimental and the other numerical results. Although the velocity component along the axis of
channel has a very dispersive character in time, the mean velocity profile keeps the shape of the a and b cases,
with the dimensionless length of recirculation zone equal to 1.68. Some values assumed in some given times and
the temporal mean value are presented in Fig. 11. The results using semi-deterministic approach performed
here has been deteriorated in comparison with the classical one, in opposition to the improvement obtained by
Ha Minh and Kourta, 1993.

Finally, a short test was performed for a reactive case to evaluate the ability of the present method to
model turbulent unsteady reacting flow. The temperature distribution in a given physical time is shown in
Fig. 12, where the calculation was performed using the BML reaction rate expression defined at Eq. (3) is
adopted. Although the geometry of the obstacle used in the test cases calculated by Bailly, 1996, is different,
the preliminary results obtained in present study are encouraging. The method is able to calculate higher
temperatures at the near wake of the obstacle and the unsteady behavior is equally present. The authors
believe that the temperature increase before the obstacle is the result of the numerical diffusion of the progress
variable, which suggests the need for further mesh refinement studies in the future work. The mesh used for
this reactive case is precisely the same one used for the a and b cases, shown in Fig. 4.

8. Concluding Remarks

A time-accurate coupled explicit procedure for solving the unsteady reacting Navier/Stokes equations was
presented and tested on two basic test cases: a channel flow and the wake of a triangular bluff body. Some
observations are possible considering the results here discussed. First, the adopted two-equation turbulence
model gives good results for some integral parameters there are in good agreement with experimental data.
The mean velocity along the channel flow test case has agreed with experimental results for both logarithmic
wall law as well as the Reichardt wall law. The length of the recirculation zone has a fair agreement with
experimental data when the baseline k — € model with the logarithmic wall law is adopted. Improvement in
Strouhal number and length of the recirculation zone are obtained with the use of Reichardt wall law. Second,
the semi-deterministic approach for the two-equation model results on degradation of the integral parameters,
mainly the Strouhal number. The length of the recirculation zone does not agree well with the experimental
data either.

The authors believe that the good results obtained with the present method using the classical approach
for turbulence modeling are a consequence of good spatial resolution with reduced numerical diffusion. As a
consequence, the unsteady flows were well captured. The use of the Laplacian of one of the turbulence properties,
k or €, to switch the second difference artificial dissipation term is able to stabilize the numerical method even
in the presence of the high Reynolds number k& — ¢ model. For the semi-deterministic approach, only the use of
the Laplacian of € makes the discretized system of equations stable.

A qualitative evaluation of the present method in unsteady reactive calculations is performed and it shows
that the method is robust enough to calculate such combustion flows. The reactive case calculations seem
to indicate a better correlation with the expected results, which is an improvement over similar simulations



available in the literature. Moreover, further investigations of the semi-deterministic approach is necessary as
well as more detailed validation of the reactive case.
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Figure 7: Axial evolution of mean longitudinal velocity
component using logarithmic wall law and standard
k — € model.
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Figure 9: Axial evolution of mean longitudinal com-
ponent velocity using Reichardt wall law and standard
approach for & — € model.
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Figure 8: Component in X direction of momentum
at X = 0.07529 m as function of the time using
Reichardt wall law and standard approach for k — €
model.
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Figure 10: Component in X direction of momentum
at X = 0.07567 m as function of the time using
Reichardt wall law and semi-deterministic approach
for k — € model.
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