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Abstract. The Successive Substitution Method plays an important role in the Isothermal Flash calculation. The computational 
problems associated with this method may range from slow rate of convergence to no convergence near the phase boundaries or the 
critical points. Under certain conditions, apparent convergence may tend to an incorrect solution. Hence, some numerical 
techniques have been developed to improve the convergence rate in Isothermal Flash calculation. In this work, three of these 
methods are compared and applied to a wide range of isothermal flash calculations to demonstrate the robustness of these methods. 
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1. Introduction   

 
Isothermal flash calculations are of particular importance in petroleum and chemical engineering. Miscible gas 

floods of oil reservoirs cannot be adequately modeled without a detailed flash phase behavior description. Distillation, 
adsorption, and extraction are examples of multistage processes in which phase equilibrium calculations at specified 
values of Pressure (P) and Temperature (T) are required. Process simulators generally require the incorporation of 
vapor-liquid equilibrium flash. Indeed, flash calculations are the most important aspect of process simulators, therefore 
these calculations must converge rapidly and must be robust for a wide range of temperatures and pressures and for a 
broad spectrum of mixtures. 

The Successive Substitution Method (SSM) is the most used method and has proved to converge to the optimal in 
most practical cases (Henley and Seader, 1993). However, a good initial estimation is required to avoid undesired 
solutions and to enhance convergence. However, the SSM may present either a slow convergence rate or no 
convergence near the phase boundaries or the critical points. Under certain conditions, apparent convergence may lead 
to an incorrect solution. The algorithm used for the calculations herein is based on the classical Rachford and Rice 
(1952) procedure for isothermal flash. The formulation of the isothermal flash problem appears as the minimization of 
an objective nonlinear function with linear inequality constraints for the conservation of mass and the nonnegativity of 
phase compositions suggested by Henderson (1993).  

The SSM is a very fast methodology, however the rate of convergence becomes increasingly low in the vicinities of 
critical points. Various attempts have been reported to enhance the rate of SS convergence (Mehra et alii, 1982), 
therefore, it is necessary to change the original algorithm to accelerate it. In the present work, the algorithms suggested 
by Mehra et alii (1983) and by Armijo (1966) are used. Finally, the original SSM, the SSM modified by Mehra et alii 
(1983) and the SSM modified by Armijo (1966) are applied in the solution of the isothermal flash problem and their 
results are compared. 

 
2. Statement of the Isothermal Flash Problem 
  

We consider here only the isothermal flash, which refers to calculation of the quantities and compositions of the 
vapor and liquid phases making up a two-phase system in equilibrium, typically a vessel with T and P values fixed for a 
given feed ( )1 2, , , rz z z  

We formulate the isothermal flash model using Callen's (1985) thermodynamic parlance. The equilibrium state is 
defined as the state of minimum Gibbs free energy among the manifold of states of constant temperature and pressure. 
For a vapor-liquid system, the total Gibbs free energy is given by 

 

( ) ( ) ( ) ( )

1 1= =

= +∑ ∑
r r

v v l l
i i i i

i i

G n nµ µ   (1) 

 

where 
( )f
in , ,=f l v , represents the numbers of moles of component i  in the vapor, 

( )v
in , or liquid, 

( )l
in , phase. The 

chemical potential 
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( ) ( ) ( ) ( )( )1 , ,=f f f f
i i rn nµ µ  with 1,2, ,=i r  and ,=f l v  (2) 

 
is a homogeneous function of degree zero. By dividing each extensive parameter by the number of moles, 

( ) ( )
1=

=∑ rf f
ii

n n , the same value for function 
( )f
iµ is obtained. Thus, we can write Eq. (2) in terms of intensive 

parameters as 
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where 
( ) ( ) ( )
1 1=f f fx n n  is the molar fraction of the ith component in f  phase.  

As demonstrated in Henderson et alii (2001), if ( ) ( )= +v ln n n  is the total number of moles in the mixture, then the 

total molar Gibbs free energy, =g G n , can be written in the form 
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where 
( )l
iµ and 

( )v
iµ have the functional forms described as  

 
( ) ( ) ( ) ( )( )1 1, , −=l l l l
i i rx xµ µ  with 1,2, ,=i r   (5) 

 
( ) ( ) ( ) ( )( )1 1, , ,−=v v v v
i i rx x lµ µ  with 1,2, ,=i r   (6) 

 

and 
( )= ll n n  is the molar fraction of the liquid phase.  The chemical potential of the ith component can be expressed, 

with constant T
T T

, by 
 

( ) ( )( ) ( )( )ln ln = + 
f f f

i i iRT Pxµ φ   (7) 

 

where R  is the universal gas constant, 
( )f
iφ is the fugacity coefficient of the ith component in phase. In order to model 

the liquid and vapor phases, the Peng-Robinson (1976) cubic equation of state and the classical mixing rules were 
utilized.  

According to the Gibbs free energy minimum principle, at the equilibrium state the values of the intensive 
parameters of a system are those that minimize the total molar Gibbs free energy of the system under the same specified 
values of temperature and pressure.  

Therefore, the equilibrium state of a two-phase system undergoing a process at constant temperature and pressure 
can be stated as follows:  

Given T , P  and iz , 1,2, ,=i r , find the values of ( ) ( )
1 1, , −

l l
rx x  and l  that minimize 
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subject to 
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where ( ) ( ) ( ) ( )( )1 1, , −=l l l l

i i rx xµ µ  and ( ) ( ) ( ) ( )( )1 1, , ,−=v v v v
i i rx x lµ µ . 

The variables 
( )l
rx , v  (the molar fraction of the vapor phase), and 

( )v
ix are calculated respectively from  
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1
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1v l= −   (11) 

 
( ) ( )v l
i i ivx z lx= −   (12) 

 
 

at each step of the iterative process until a minimum of g  is achieved. A similar discussion yields the formulation of 
the isothermal flash problem in intensive variables of the vapor phase.  
 
3. The Successive Substitution Method 
 

The successive substitution procedure used in the flash problem herein was proposed by Rachford-Rice (1952) and 
will be described briefly in this section. 

 

Step 1: The initial value for iK  is estimated using a correlation proposed by Wilson (1969),  
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where i ir cP P P=  is the reduced pressure and i ir cT T T=  is the reduced temperature of the ith component. iω  is the 
accentric factor of each component. 
 

Step 2: Solve the Rachford-Rice (1952) equation to obtain ν  

( ) ( )
( )1
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Step 3: Calculate ( )l
ix , 1, ,i r= , using the equation (15). 
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( )

1 1
l i

i
i

z
x

v K
=

+ −
  (15) 

 

Step 4: Calculate ( )v
ix , 1, ,i r= , using the equation (16) 
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Step 5: 
( )l
iµ  and 

( )v
iµ  should be calculated using the Peng and Robinson (1976) equation 

 

Step 6: Calculate 
( )f
iφ , ,=f l v , using the Eq. (7) 

 

Step 7: Calculate 
( )f

if , ,=f l v , using the Eq.(17) 
 

( )( ) ( )( ) ( )( )ln ln lnf f f
i i if x Pφ= +   (17) 

 

Step 8: Uptade the iK  factor, 
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Step 9: Investigate the convergence, given by 



 
( )

( )

l
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i iv
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x
F K

x
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If 1iF ε− <  for 1, ,i r= L  then the convergence is reached. Otherwise, return to step 2. For all cases presented 

herein 
71 10ε −= × . 

 
In this work, we used the cubic equation of state of Peng-Robinson (1976), because the cubic equation is smaller 

degree polynomial equation capable to represent behavior simultaneously the balance liquid-vapor. 
 

4. The Mehra Algorithm 
 

Mehra, Heidmann and Aziz (1983) developed some algorithms to accelerate method SSM. Their method is based 
on a relaxation parameter which is calculated as follows 

 

( )
1

1 1 1
1

1 1 1

T
k k k

kT T
k k k k

g H g

g H g g
λ λ

−
− − −

−−
− − −

 
≅ ⋅ −  

 and 1 1λ =   (20) 

 
where ( ) ( ) ( )( )1 2, ,...,v v v

rg G N N N= ∇  is the gradient of the Gibbs function and each element of
2H G= ∇  is given for 
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where ijδ  is the delta of Kronocker. Each component of the inverse matrix H  is calculated using the next equation 
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where  
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To use this algorithm with the SSM ones should calculate the λ value, Eq. (20), and should use the next equation as 

a substitute of Eq. (18). 
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Only positive values of λ  are expected. Absolute value of λ  must be used if Eq. (20) results in negative lambda. 

The relaxation parameter is set equal one. i. e., 1λ = , when 6k kgλ ⋅ > , in this case, the algorithm suggested by Mehra 
et alii (1982) is similar to the SSM without acceleration. 

 
5. The Armijo Condition 

  
The Armijo condition is a classical procedure in the optimization methods. It allows adjustment of the step to 

guarantee progress towards the solution of the nonlinear problem at each iteration.  
 

( ) ( ) ( )( )T

n n n n n n nf x d f x f x dλ α λ+ ⋅ − ≤ ⋅ ⋅ ∇ ⋅  with 0 1α< <  (25) 



 
Algorithm Model with Lineal Search (Inexact) of Armijo:  
 
Parameters α , ( )0,1∈β , *k Z∈  and { }s 0,1∈ . 

Data n
0x IR∈ . 

Step 1: Do n 0= . 

Step 2: If ( )nf x 0∇ = , stop. Else, calculate a direction of descent nd . 

Step 3: Do { }* *K k Z / k k= ∈ ≥  and calculate the size of the step     

           ( ) ( ) ( ){ }Tk k k k
n n n n n nmax / f x d f x f x d= = + − ≤ ⋅ ⋅ ∇λ β β β β α   

Step 4: Do n 1 n n nx x d+ = + ⋅λ , n n 1= + . And return to the step 2. 

 
4. Results 

 
In order to evaluate the two proposed methods (SSM-Mehra and SSM-Armijo), two mixtures of acyclic alkanes 

(Tables 1 and 2) are used 
 
Table 1 – Global composition for the mixture I used to evaluate all algorithms 
  

Mixture I 

Element Global composition ( )iz  

Methane ( )4CH  0.669 

n-butane ( )4 10nC H  0.272 

n-decane ( )10 22nC H  0.029 

 
Table 2 – Global composition for the mixture II used to evaluate all algorithms 
 

Mixture II 

Element Global composition ( )iz  

Ethane ( )2 6C H  0.39842 

Propane ( )3 6C H  0.29313 

n-butane ( )4 10nC H  0.20006 

n-pentane ( )5 12nC H  0.07143 

n-hexane ( )6 14nC H  0.03696 

 
 
The mixture I was suggested by Henderson (1996), and its critical point is in the immediate vicinity of the pressure 

of 17,500 [ ]kPa  and the temperature of 343.15 [ ]K . The methane global composition is kept fixed and the n-butene 
and the n-decane is changed to move this mixture to near the critical point. 

Table 3 shows the number of iterations and molar volume, v , for each global composition for mixture I. They are 
obtained from three different approaches presented in this work. It can be seen that the lowest number of iteration is 
reached by using the Mehra et alii (1983) algorithm. Furthermore, near the critical point, the number of iterations is 
very different between this method and the others. Similar behavior is observed in more than twenty different mixtures 
tested as can be seen in Lima (2003). The convergence behavior of these methods can be observed in Figure 1 and 2, 
where the convergence rate is plotted for each method analyzed herein. 

 
 
 
 
 
 
 
 
 
 
 



Figure 1 – Convergence rate versus iteration for the Mixture I 
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Figure 2 – Convergence rate versus iteration for the Mixture I 
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The number of iterations necessary to solve the Isothermal Flash Calculations and the resulting molar volume of the 

vapor phase for mixture II at several pressures are shown in Table 4. As can be noticed, the convergence of the Mehra 
et alii (1983) algorithm is faster then the convergence of the SSM and the SSM-Armijo. However, at pressures of 5520 
and 5580 KPa, only the SSM-Mehra was able to correctly calculate the molar fraction of the vapor phase.  

 
 
 
 



Table 3: Evaluation of the three methodologies for the mixture I 
 

  SS Mehra Armijo 

104 HCnZ −  2210 HCnZ −  iteration v  iteration v  iteration v  

0.240 0.061 45 0.48632 14 0.48632 27 0.48633 

0.250 0.051 59 0.49500 15 0.49500 34 0.49502 

0.260 0.041 91 0.50744 18 0.50744 50 0.50749 

0.270 0.031 266 0.55002 21 0.55002 136 0.55029 

0.271 0.030 352 0.56829 21 0.56829 178 0.56865 

0.272 0.029 550 0.60647 28 0.60648 276 0.60702 

 
 

Table 4: Evaluation of the three methodologies for the mixture II 
 

 SS Mehra Armijo 

Pressure ( )kPa  iteration v  iteration v  iteration v  

4310 15 0.83360 8 0.83360 7 0.83360 

4480 17 0.78577 8 0.78577 11 0.78577 

4830 22 0.66454 8 0.66454 16 0.66453 

5170 33 0.48567 10 0.48567 23 0.48567 

5340 47 0.33216 11 0.33216 33 0.33216 

5410 60 0.23327 11 0.23327 43 0.23328 

5448 73 0.16024 15 0.16024 51 0.16024 

5500 114 0.01431 16 0.01431 78 0.01430 

5520 299 1.00000 5 0.00000 225 1.00000 

5580 90 0.00000 4 0.00000 59 1.00000 

 
 

5. Conclusion 
 
It is clear that the inclusion of the relaxation parameter suggested by Mehra et alii (1983) changes the behavior of 

the Successive Substitution method. With this relaxation parameter, it was necessary lesser iterations to solve all 
problems showed herein. Furthermore, for temperatures or/and pressures near of the critical point, the Mehra et alii 
(1983) algorithm is very successful in calculating the molar fraction of the vapor phase correctly and is faster than the 
other two methods. 
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