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Abstract. Most model fitting techniques for mechanical systems modelled by finite elements require the identification of experimental
modal parameters, which are obtained through modal tests. But, in the case of real rotating rotor-coupling-bearing systems, the
accomplishment of complete modal tests is frequently not possible, due to the difficulties present in the excitation process of the
rotating components of the system, either by using electric exciters (shaker) or impact exciters (hammer). In this article, the
possibility of fitting the finite element model of a rotor-coupling-bearing system is introduced. The process consists in the evaluation
of stiffness and damping coefficients of the coupling by using the frequency response function (FRF) due to residual unbalance
(inherent condition of operation for rotating systems), or due to an external aleatory excitation. The fitting procedure consists in
applying an iterative non-linear method for parameters fitting to determine the unknown coefficients of the model, which values are
initially assumed. The estimate problem is a non-linear problem of minimum squares, where the objective function to be minimized is
the sum of the square of the difference among magnitudes of the theoretical and experimental frequency response functions. The
finite element model of the system only considers the transversal vibrations. The well-known linear models are considered for rotors,
bearings and rigid disks. In the same way, the flexible coupling of the system is modelled using simplified linear models
recommended in the literature.

Key words: flexible couplings, flexible rotors, bending vibrations, finite elements, and rotordynamics.

1. Introduction

In the mechanical systems, unbalance and misalignment of the shafts represent two important sources of vibrations.
Otherwise, the lack of information about forces and moments generated in the axial coupling between shafts due to
misalignment makes difficult the clear understanding of the influence of this component in the system. It is not possible
to consider a unique simplified mathematical finite element model for these joining elements. Tapia A. and Cavalca K.
(2001) implemented, based on the models of Nelson H. and Crandall S. (1992) and Kramer E. (1993), five simplified
models to represent the mechanical couplings in transversal vibrations analysis of rotor-coupling-bearing power
transmission systems. The couplings were considered through a mass-spring-damper system. Xu et al (1994) analyzed
the vibrations of a flexible rotor-motor-coupling system using the component mode synthesis technique, in which the
coupling is described through several nodes. In this sense, the present work search to adjust the theoretical models of
the rotor-coupling-bearing systems, considering each one of the 5 models introduced by Tapia A. and Cavalca K.
(2001), using the frequency response curves (FRFs) of the system for the fitting process. The fitting procedure uses the
Non-Linear Minimum Squares Method based on the previous work of Arruda J.R.F. and Duarte M.V. (1987, 1989).

2. The Rotor-Coupling-Bearing Mechanical System.

Fig. (1) shows the inertial and auxiliary reference systems considered for Rotor-Coupling-Bearing Systems. In this
work, only the bending vibrations of the system are considered. An inertial reference system XYZ and an auxiliary
reference system xyz, fixed in the shaft, describe the equations of motion of the system. A generic cross section of the
bending rotor is defined regarding the system XYZ through the generalized coordinates (u,v,α,β). u(Y,t), v(Y,t) are the
translations in X and Z directions, which supply the cross section centre position at the instant t. α(Y,t) and β(Y,t) supply
the orientation of the cross section around X and Z axes respectively.
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Figure 1. Reference Systems for Rotor-Coupling-Bearing System.
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The finite element models used to represent flexible shafts, rigid disks and bearings are described in Tapia A. and
Cavalca K. (2001). The shafts are modelled by flexible beam elements of continuous mass; the disks are modelled as
rigid components with concentrated masses; the bearings are represented by stiffness and damping equivalent
coefficients, neglecting bending moments and oil film inertia effects in these components.

3. Mechanical Couplings

According to Tapia A. (2003), there are few simplified models to represent mechanical couplings in Rotor-
Coupling-Bearing Systems. Therefore, there is less discussion about what simplified model can be the best
representation for the physical problem involving the mechanical axial coupling (rigid or flexible). In Tapia A. (2003)
the following models were implemented.

3.1. Kramer Models

The first model considered to represent the flexible couplings in the modelling of rotating systems takes into
account the considerations given by Kramer E. (1993), according to Fig. (2a). This model consists of two free-free
shafts with 8 degrees of freedom each one. The coupling effect consists in constraining the translation degrees of
freedom before node i and after node j of the coupling. In this case, the displacements are equal in x and y directions,
ui=uj and vi=vj. The system, initially with 16 degrees of freedom, is reduced to a system with 14 degrees of freedom, due
to the coupling effect, as shown in Fig. (2b). This coupling model was applied by Sekhar et al. (1996).
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Figure 2. (a) Mechanical System of two shafts axially coupled, (b) The 1st Kramer model for couplings.

The second model studied, according to Kramer E. (1993), takes into account the stiffness kR and the damping cR of
the coupling. In this case, the same constrains of the 1st model are maintained, according to Fig. (3).
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Figure 3. The 2nd Kramer model for flexible couplings.

3.2. Nelson and Crandall Models

The third model takes into account the considerations stated by Nelson H. and Crandall S. (1992). This model
represents the coupling as an elastic component with isotropic translational stiffness kT and rotational stiffness kR,
between the stations i and j, corresponding to the connecting points of the shafts, as shown in Fig. (4a). The fourth
model is also according to the considerations stated by Nelson H. and Crandall S. (1992). This model considers stiffness
and damping of the coupling, through both translational and rotational equivalent stiffness and damping coefficients (kT,
kR, cT, cR) according to Fig. (4b).
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Figure 4. Nelson and Crandall Models: (a) 3rd Model; (b) 4th Model.
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In the four models presented, the inertia effects are included considering two rigid disks located in both stations of
the shafts connection. The 5th model considered in the analysis is the rigid disk model (or rigid coupling). The equation
of motion of the coupling, for each model previously described is written in the following form:
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Where:
{Fcon}, {Fex} are the connecting forces and external forces vectors, acting on the coupling;
[Ma], [Ga] are the mass and gyroscopic matrices due to the coupling;
[Ca], [Ka] are the damping and stiffness matrices due to the coupling. The damping matrix can be null depending on

the model (Tapia A. 2003).

These physical coupling models are isotropic models of mass-spring-damper systems, in which low values of
translational and/or rotational stiffness coefficients approach the dynamical behaviour of flexible couplings, as well
high values of the same parameters simulate approximately rigid coupling.

4. Equation of Motion for Rotor-Coupling-Bearing Systems

After the equations of motion were defined for each component of the system, the complete equation of motion for
the whole system (Eq. (2)) can be obtained by the Direct Stiffness Method (DSM) described by Nelson H. and Crandall
S. (1992).

[ ]{ } [ ] [ ][ ]{ } [ ]{ } { }exggggggg FqKqCGΩqM =+++ !!! . (2)
Where: [Mg] is the global mass matrix of the system, generally symmetric, and containing the concentrated masses

of rigid disks and coupling, as well as the masses of beam elements of the shaft; [Gg] is the global gyroscopic matrix of
the system, containing the contribution of the previous components, although this matrix is non-symmetric and it
depends on the rotational speed of the rotor Ω; [Cg] and [Kg] are the global dissipative (damping) and stiffness matrices
of the system, containing the flexible shaft elements, bearings and coupling contributions; {Fex} is the external forces
vector; { } { } { }ggg qqq ,, !!!  are the global acceleration, velocity and displacement vectors of the system in principal co-
ordinates.

5. Frequency Response Functions of the System

Two types of frequency response functions FRFs are considered in the analysis: the residual unbalance response of
the system FRD and the transfer function due to an aleatory excitation force FRF.

5.1. Unbalance Response Function (FRDs)

The external forces due to a residual unbalance {Fd} and the system response {qd} to this excitation force can be
written in the following form:

{ } { } ( ) { } ( ) tΩSinFtΩCosFFd .. sc +=  ; { } { } ( ) { } ( ) tΩSinqtΩCosqq .. scd += . (3)

Substituting {Fd} and {qd} in Eq. (2) for known coefficients of the vectors {Fc} and {Fs} of the unbalance external
force ({Fd}={Fex}), the coefficients of the vectors {qc} and {qs} can be determined:
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Substituting these coefficients in the equation that describes {qd}, the unbalance response of the system can be
obtained in the time domain. Otherwise, the unbalance response function (FRD) of the system can be obtained by
combining the same coefficients.

5.2. Transfer Function in the Frequency Domain

The transfer function in the frequency domain is also named frequency response function (FRF). The FRF is
defined by considering a sinusoidal excitation through a group of forces with the same frequency ω, but with different
amplitudes and phases, represented by {Fex}={Fo}eiωt. The system response can be defined as {qg}={qo}eiωt. The
equation of motion of the system becomes:



4

[ ] [ ] [ ][ ] [ ][ ]{ } { }oogggg
2 FqKCGΩiM =+++− ωω . (5)

Finally, the transfer functions matrix [H(ω)] is given by:
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Therefore, any of the transfer functions Hjk(ω) can be defined by the modal superposition method given bellow:
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Where:
Hjk(ω) is the transfer function for the j-th d.o.f. (qoj) due to a force (Fk) acting on the k-th d.o.f., at a frequency ω;
{qod}r is the right eigenvector corresponding to the eigenvalue λr and qodjr is the j-th component;
{qoe}r is the left eigenvector corresponding to the eigenvalue λr and qoekr is the k-th component;
ar , br are diagonal terms of the matrices ([diag(ar)], [diag(br)]), defined by the orthogonality property of the modal

matrices of the right modes [Xd] and left modes [Xe] of the system, as given bellow:
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6. Sensitivity Matrix of the Frequency Response Functions

Duarte M.A.V. (1994) defined sensitivity of frequency response functions by using the first order finite differences,
applying the partial derivatives of the FRFs related to the structural parameters of the rotor. (Tapia A. 2003) gives the
FRF matrix for a rotating system, using the mechanical impedance matrix:

[ ] [ ] [ ] [ ] [ ][ ] [ ][ ] 1

ggggg
2 KCVCGiMH −++++−= Ωωωω)( . (8)

Where: ω is the frequency of the excitation force; [Mg], [Cg], [Kg], [Gg] are the global matrices of mass, damping,
stiffness, and gyroscopic matrix of the system; [CVg] is the proportional viscous damping matrix of the system.

The sensitivity of any FRF related to a parameter pk, using the derivative property of the inverse matrix, is defined
by:
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For a FRF Hij(ω), an element of the sensitivity matrix [S]ptxnp is defined by:
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The derivatives present in Eq. (10) can be obtained analytical or numerically, which means a certain difficulty level,
depending on the complexity of the system modelled. Therefore, the sensitivity matrix is defined by finite differences,
applying the Brown and Dennis rules (Duarte M. 1981), as follow:
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7. Models Fitting

In the present work the model fitting of the rotor-coupling-bearing systems applies the variation of the model
parameters to the coupling. The process uses the Non-linear Minimum Square Algorithm based on the previous work of
Arruda, J.R.F. (1987,1989). The algorithm was adapted to the fitting process in the frequency domain, which can be an
unbalance response FRD, or a transfer function due to an aleatory excitation FRF. These curves are nominated
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frequency response functions (FRFs) and they are applied to adjust the coupling parameters in the rotor-coupling-
bearing system. The experimental FRFs measured at the nodes (1...nos) are named FRFexp, and the FRFs obtained
through the theoretical model are named FRF. The vector of the estimated parameters is { } 1npxp  where np is the number
of parameters to be evaluated. The objective function (Fobj) is the sum of the squares of the difference between the
experimental measurements and the simulated responses:
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Where: pt is the total number of points considering all FRFs; [W]ptxpt is the positive definite weighted matrix with
dimension ptxpt; ( ) ( )iiii ffe ωω ,  are the experimental and simulated frequency response functions, respectively in node
i and at the frequency ωi; n is the number of points for each FRF.

Defining a generic coefficient Sij of the sensitivity matrix [S] as ( ) jiij pfS ∂∂= ω , the complete sensitivity matrix is
obtained:
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Each sensitivity coefficient is evaluated by Eq. (11). The algorithm that evaluates the parameter by Non-linear
Minimum Square consists of the following steps:
•  To calculate the Jacobian (sensitivity matrix), of the vector { } 1ptxFRF , until the parameters to be estimated { } 1npxp

assume the value corresponding to the k-th iteration { } kp . The Jacobian is given by:
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•  To determine the search direction of the optimal vector { } 1npxp  for the next iteration, using the minimum concept
for the objective function:
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Applying this condition to the objective function, Eq. (15) can be written:
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Generally in Eq. (15) nppt > , so that the solution uses the generalised inverse definition or pseudo-inverse ([ ]+).

The search direction { } kp∆  is obtained as:
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•  To calculate the next vector of estimated parameters { } 1kp + , which is function of { } kp  and { } kp∆ :

{ } { } { } kk1k ppp ∆α+=+ . (17)
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In Eq. (17) the value of α must be determined through a unidimensional search method along a straight line. The
Coggin Method was applied in this case, which avoid the derivative functions. The successful linear search must satisfy
the condition k

obj
1k

obj FF <+ .
•  If the linear search is not successful, the sensitivity matrix  [S]k is modified for the k-th iteration, introducing a
damping factor λ, and rewriting the sensitivity matrix:

[ ] [ ] [ ] kkk QSS λ+= . (18)
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The damping value λ is increased up to reach the condition where k
obj

1k
obj FF <+ . The iterative process goes on until

reaching the convergence conditions of the parameters estimation process.
! The FRFs can be in linear scale (FRF) and logarithmic scale ( ) ( )( )FRFLog20  FRFLog 1010 *, ;
! There is an external penalty function (w: penalty coefficient) to the inequality constrains imposed to the

parameters ( )maxpinm i ≤≤ :
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8. The Fitting Numerical Simulation

The system sketch in Fig. (5) represents the rotor-coupling-bearing model used to verify the fitting process of the
coupling parameters in the mechanical system. Table (1) shows the dynamic and physical characteristics of several
components of the mechanical system. The Finite Element Model developed in the simulation is illustrated in Fig. (6).
The FEM considers each modelling criterion discussed previously. These models are used in the fitting process of the
experimental FRFs (FRD, FRF).

Figure 5. Sketch of simulated Rotor-Coupling-Bearing System.

Table 1. Dynamic and Physical Properties of the simulated mechanical system.
Shafts: Density = 7759.255kg/m3 , Young Modulus = 1.936*1011N/m2 , de Poisson coefficient = 0.3

Shear factor = 0.9 , Viscous damping factors: ( qzk = 22.989*10-6 , qzm = 15.691 )

1 Stiffness: kxx=5.0*107 N/m, kxz=0.0 N/m, kzz=7,0*107 N/m, kzx=0.0 N/m
Damping: cxx=5.0*102 Ns/m, cxz=0.0 Ns/m, czz=7.0*102Ns/m, czx=0.0 Ns/m

2 Stiffness: kxx=7.0*107 N/m, kxz=0.0 N/m, kzz=9,0*107 N/m, kzx=0.0 N/m
Damping: cxx=3.0*102 Ns/m, cxz=0.0 Ns/m, czz=5.0*102Ns/m, czx=0.0 Ns/m

3 Stiffness: kxx=5.0*107 N/m, kxz=0.0 N/m, kzz=7,0*107 N/m, kzx=0.0 N/m
Damping: cxx=5.0*102 Ns/m, cxz=0.0 Ns/m, czz=7.0*102Ns/m, czx=0.0 Ns/mB

ea
ri

ng
s

4 Stiffness: kxx=7.0*107 N/m, kxz=0.0 N/m, kzz=9,0*107 N/m, kzx=0.0 N/m
Damping: cxx=3.0*102 Ns/m, cxz=0.0 Ns/m, czz=5.0*102Ns/m, czx=0.0 Ns/m

Disk 1:
Density = 6303.235kg/m3

Disk 2:
Density = 6303.235kg/m3

Inner radius = 6.0mm , Outer radius = 17.0mm , Equivalent thickness = 43.115mm
Equivalent Density = 2758.219kg/m3

Translational Stiffness = 46.095*103 N/m; Translational Damping = 10.949 Ns/mCoupling

Rotational Stiffness = 22.076*101 Nm/rad; Rotational Damping = 10.949*10-6 Nms/rad
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Figure 6. FEM to the Rotor-Coupling-Bearing System.

8.1. The Fitting of the Unbalance Response Function (FRDs)

The sensitivity analysis of the FRDs in the operational frequency range of the rotor, with respect to the coupling
parameters in the 2nd Nelson and Crandall model, shows that the FRDs corresponding to the 9, 10, 17, 18 d.o.f. are the
most sensitive to the majority of the coupling parameters, as in Fig. (7).

Sensitivity of the Unbalance Response to the Parameters KT and KR
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Figure 7. FRDs sensitivity of the simulated system to the stiffness parameters.

Once the most sensitive FRDs are defined, a simulation of the experimental FRDs is carried on (FRDsexp),
according with Eq. (19). In this equation, the noise is introduced by the formulation given by Dos Santos J., Ferraz F.
(2001). Each point of the experimental FRDs is evaluated by:

[ ] [ ]11rand
100

nf11rand
100

fff s
nj

1j

2
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a
sse ssi

,**,** −+−+= ∑
=

=

ββ
. (19)

Where: rand[-1,1] represents a random number between –1 and +1; 
isf  is the i-th component of the FEM simulated

FRD; is the i-th component of the experimental FRD; n is the number of points of each FRD; βa is the aleatory factor of
the noise expression (10%); βs is the systematic error of the noise expression (1%). The residual unbalance for each
rigid disk is 15x10-5kgm with a phase angle of 90o between them. The residual unbalance in disk 1 is located at 0o from
Z-axis and the frequency range of analysis is 300 to 18300 rpm.

Once the experimental FRDs are evaluated from Eq. (19) for the four d.o.f. of the coupling, the fitting process to
the model presented in Fig. (6) can be carried on. The fitting process uses the FRDs in the four d.o.f. simultaneously
and the starting points of the parameters are approximately (1/10) times the values used to obtain the experimental
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FRDs. The results of the fitting process are showed in Fig. (8) to d.o.f. 17 and 18. The results of this process are in
Table (2).

UNBALANCE RESPONSE FUNCTIONS in the dofs:  17(X ),18(Z )
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Figure 8. Fitting results of the simulated experimental FRDs.

Table 2. Estimation Process Data for the parameters of each Coupling Model Analysed.
Parameters 2nd Nelson - Crandall 1st Nelson - Crandall 2nd Kramer
Real Value Adjusted Error % Adjusted Error % Adjusted Error %

1st Kramer Rigid

kT=46.095*103N/m 46.870*103 1.68 41.134*103 10.76 --- --- --- ---
kR=22.076*101Nm/rad 22.399*101 1.46 21.761*101 1.43 84.364*101 282.15 --- ---
cT=10.949Ns/m 10.922 0.25 --- --- --- --- --- ---
cR=10.949*10-6Nms/rad 14.581*10-4 ∞ --- --- 23.171*10-2 ∞ --- ---
Error % 18.48 25.97 292.66 466.30 229.46
# Iterations 54 17 35 --- ---
# Evaluated Functions 569 161 389 --- ---

8.2. Fitting of the Frequency Response Functions

The sensitivity analysis of the FRFs (inertance), considering the 2nd Nelson and Crandall model, shows that the
FRFs to the 22, 25, 30, 34 d.o.f. were the most sensitive with respect to the coupling parameters. The FRFs were
obtained from an aleatory external force (Gauss Distribution) applied in the direction of 10 d.o.f. in the model. The
range to the excitation force is 200 to 400Hz. The system rotational frequency is 10000rpm. Once the most sensitive
FRFs are defined with respect to the coupling parameters, the simulated experimental FRFs (inertance) are also
obtained, with the 2nd Nelson and Crandall model. Afterwards, the fitting process can be carried on, considering all the
experimental FRFs simultaneously in the four d.o.f. of the coupling. The process results, for all coupling models
proposed, are presented in Fig. (9) to 22 and 25 d.o.f. Table (3) shows the results of the fitting process.
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Figure 9. Fitting Results to the FRFs (inertance) of the system.
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Table 3. Estimation Process Data for the parameters of each Coupling Model Analysed by using the FRFs.
Parameters 2nd Nelson e Crandall 1st Nelson e Crandall 2nd Kramer
Real Value Adjusted Error % Adjusted Error % Adjusted Error %

1st  Kramer Rigid

kT=46.095*103N/m 45.866*103 0.50 27.354*103 40.66 --- --- --- ---
kR=22.076*101Nm/rad 22.062*101 0.06 19.590*101 11.26 21.599*101 2.16 --- ---
cT=10.949Ns/m 10.971 0.20 --- --- --- --- --- ---
cR=10.949*10-6Nms/rad 50.723*10-7 53.68 --- --- 99.755*10-8 90.89 --- ---
Error % 6.377 61.427 125.988 180.749 166.965
# Iterations 16 66 9 --- ---
# Evaluated Functions 202 607 220 --- ---

9. Fitting of the Experimental Test Data

Figure 10. Experimental set up – Sketch of the System – Modal Analysis Free-Free Model of the Rotor-Coupling
System.

The modal analysis was accomplished in the system shown in Fig. (10), free-free condition, to obtain the FRFs
(inertance) in the 6, 10, 14, 18, 22, 26, 30, 34 d.o.f. The random external force (Gauss Distribution) is applied on the 6
d.o.f. using an electromagnetic exciter in a frequency range of 0 to 500Hz. The analysis was carried on in the range of 0
to 250Hz. The sensitivity analysis considered the FRFs from the FEM in Fig. (10) with respect to the coupling
parameters in the 2nd Nelson and Crandall model. The objective is to represent the flexible coupling made of Neoprene.
The results show that the FRFs (inertance) in the 6, 10, 14, 18, 22, 30 d.o.f. are the most sensitive in the process. Fig.
(11) shows the sensitivity of the FRFs in the 14, 18, 22 d.o.f.. The experimental FRFs at the 14, 18, 22 d.o.f. are
simultaneously used in the fitting process of the couplings models in the rotating system showed in Fig. (10). The
results obtained from the fitting process are presented in Fig. (12). Notice that only two d.o.f. (18 and 22) are plotted in
this graphic. Table (4) gives the data of the estimation process for the parameters of each coupling model using the
experimental FRF .
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Sensitivity of the Frequency Response Functions to the Parameters KT and KR
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Figure 11. FRFs Sensitivity to the 2nd Nelson and Crandall Model – Rotor-Coupling System.
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Figure 12. Fitting Results to the experimental FRFs (inertance) of the system in Figure 10.

Table 4. Estimation Process Data for the parameters of each Coupling Model by using the experimental FRFs.
2nd Nelson - Crandall 1st Nelson - Crandall 2nd Kramer

Parameters
Adjusted Adjusted Adjusted

1st Kramer Rigid

kT : N/m 43.609*103 65.659*103 --- --- ---
kR : Nm/rad 21.890*101 21.949*101 21.173*101 --- ---
cT : Ns/m 11.511 --- --- --- ---
cR : Nms/rad 42.965*10-7 --- 61.924*10-6 --- ---
Error % 77.627 92.123 118.328 68.183 320.89
# Iterations 70 92 97 --- ---
# Evaluated Functions 787 835 935 --- ---

10. Conclusions

An estimation method was implemented to fit parameters of coupling simplified models in Rotor-Coupling-Bearing
System. The FRFs (unbalance response or transfer functions) are used for this purpose. The fitting procedure applies the
Non-linear Minimum Square Method. In the sensitivity analysis for the 2nd Nelson and Crandall model, using the FRDs
and the FRFs (inertance), different d.o.f. were more or less sensitive with respect to the coupling parameters. This can
be explained by the mode shape of the rotor, which can make some d.o.f. more significant than the others in a fitting
process. In the model fitting using the experimental FRFs generated by simulation (2nd Nelson and Crandall model with
a noise effect), the convergence of the coupling parameters leaded to the expected parameters supposed to be real. This
fact is true to the different models analysed, for the parameters which present the highest sensitivity in the frequency
range of analysis. In these cases, the maximum value of the error was 1.7% for the 2nd Nelson and Crandall model. It is
important to stand out that the 2nd Nelson and Crandall model takes into account stiffness and damping parameters to
the coupling. Figs. (8), (9) and (12) show that the models with the best fitting consider at least stiffness parameters to
the coupling. The rigid models can not reproduce the FRFs. Finally, the fitting process was applied to the experimental
FRFs (inertance) described in Fig.10 (Free-Free Modal Analysis of the Rotor-Coupling System). In this case, the model
with the best fitness of the experimental FRFs is the 2nd Nelson and Crandall model, followed by those models which
consider stiffness and/or damping coefficients for the coupling. However, the rigid models are not able to fit any
experimental FRFs as well. The fitting process quality can change also with the range of analysis. This fact is due to the
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non-linear characteristics of the coupling, which can be more significant in high rotational speed. In this case, the linear
models proposed here are not adequate to represent the dynamical behaviour of the coupling.
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