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Abstract. This work deals with a finite element anylysis of gas-lubricated spiral groove face seals operating under
stringent conditions. Seal face misalignment and coning effects are accounted for in the numerical model specially
devised for the computation of some steady-state and dynamic performance characteristics of gas face seal operating
at high speeds. A high-order Galerkin scheme is implemented to solve the zeroth- and first-order lubrication equations
generated by the perturbation procedure carried out on the classical non-linear Reynolds equation for compressible
fluids. The gas seal opening force, leakage flow and dynamic force coefficients are predicted for misaligned and
coned-face spiral groove seals for several operating conditions. Numerical results depict the influence of angular
misalignment and face coning on the behavior of gas lubricated spirally grooved face seals.
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1. Introduction

Gas face seals are finding increase use in industrial turbomachinery that requires efficient sealing systems and high
productivity. Most of the very efficient sealing systems for indutrial turbomachinery are based on grooved face seals,
whose grooves can have different geometries, such as spiral grooves, T-grooves, U-grooves and others (Burgmann,
1997).

Demands for more efficiency and higher productivity have led the face seals to be operated under very stringent
conditions. Varying high pressure ratios combined with almost inevitable geometric imperfections can induce
instantaneous angular motions on the face seal plates, which can drastically change the seal performance (Sharoni and
Etsion, 1981). At very high operating speeds, large pressure ratios and thermal distortions can make the face seal
susceptible to angular motions and coning effects (Pan and Sternlicht, 1967). Some studies developed on liquid-
lubricated face seals have verified that the seal face angular misalignment and coning affect the seal performance and
efficiency, jeopardizing its capability of working properly (Metcalfe, 1981, and Wileman and Green, 1991). On the
other hand, even though the importance of the seal dynamics on the analysis of gas lubricated sealing systems has
already been demonstrated (Tournerie et all, 1994), the technical literature lacks technical data about steady-state and
dynamic performance characteristics of the misaligned and the coned-face gas lubricated seals operating at high speeds.

This work deals with a finite element analysis of spiral groove gas face seals (SGGFSs) operating at high speeds,
which accounts for the face angular misalignment and coning effects. A finite element procedure, which is based on a
high-order Galerkin scheme (Faria, 2001), is implemented to solve the zeroth- and first-order lubrication equations in
grooved gas seals. The numerical model includes both the angular misalignment modeling (Faria, 2002) and the face
coning motion formulation. Some steady-state and dynamic performance characteristics of misaligned and coned-face
spiral groove gas seals, such as opening force, flow leakage and force coefficients, are evaluated at high operating
speeds. The numerical results depict the influence of the angular misalignment and the face coning on the behavior of
spiral groove gas face seals operating under very demanding operating conditions.

2. Parameters and Governing Equation for a SGGFS

The geometry and parameters that describe a spiral groove gas face seal (SGGFS) are depicted in Fig. (1). The seal
configuration is described following the same procedure as that used by Faria (2002). The seal geometry includes the
ridge clearance c, the grove depth cg, the ridge width wr, the groove width wg, the number of grooves Ng, the groove
angle β, the seal inner radius ri, the seal outer radius ro, the seal grooved portion inner radius rgi and the seal grooved
portion outer radius rgo. The groove depth ratio ccg=δ , the groove width ratio )ww(w grgg +=α  and the seal dam
extent )rr()rr(l ioigi −−=  are dimensionless geometric parameters widely used in the description of the seal
geometry. The seal configuration is described in relation to a coordinate system attached to the grooved seal face. The
(r,θ, z) coordinate system is attached to the rotating grooves at speed Ω. The (r,Φ, z) coordinate system is attached to
the stationary face. The relation between the two coordinate systems is given by Φ=θ+Ωt. The equation governing the
logarithmic spiral contour of the grooves is )tan(

gierr βθ=  (Muijderman, 1966). Grooves are etched either on the
rotating surface or on the stationary surface of the seal. The relative motion between the grooved and smooth surfaces
causes a pumping action in the fluid. Pumping-in (inwardly pumping) and pumping-out (outwardly pumping) seal
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designs usually find applications in industrial rotating machinery (Muijderman, 1966). Sealing pressure dams are
generally employed in SGGFS configurations either to minimize leakage or increase axial stiffness. Inner and outer
pressure dams are introduced into the grooved surface to enhance the seal performance.

The laminar flow of an isothermal, isoviscous ideal gas within the film lands of a spirally grooved face seal (Faria,
2001) is described by
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Here, p represents the hydrodynamic pressure, h is the fluid film thickness, and µ is the fluid viscosity. B is a seal
parameter that describes the groove rotation direction. The values of B for the different seal configurations are given in
Faria (2001).
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Figure 1. Description of a SGGFS with rotating and stationary grooved f
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Figure 2. Schematic view of a coned face mechanical seal.
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The film thickness ho at an equilibrium position can be written as

)(cos),( rhsinrrcrh coxoyo +−+= θϕθϕθ ,    in the ridge region                     (2)

)(cos),( rhsinrrccrh coxoygo +−++= θϕθϕθ  ,    in the groove region.                                                    (3)

oxϕ  and 
oyϕ  describe the angular position of the moving surface at equilibrium, i.e. are small angular displacements

representing the face misalignment about axes X and Y, respectively. The coning effects are given by
γtan)rr()r(h ic −= , where γ represents the coning angle of the seal surface (see Fig. (2)). The seal mating faces are

manufactured with compatible materials of different moduli of elasticity and coefficients of thermal expansion
(Burgmann, 1997). The face with lower modulus of elasticity and coefficient of thermal expansion is more likely
subjected to face coning.

Figure 3. Equilibrium position of a misaligned moving surface.

3. Lubrication Equations

A linearized perturbation procedure (Lund, 1987) is performed on the Reynolds equation (Eq. (1)) to render the
zeroth- and first-order lubrication equations. Small dynamic perturbations ∆Z, xϕ∆ , and yϕ∆  at excitation frequency

ω about an equilibrium position of the moving rotating face cause perturbations in the film thickness and pressure
distributions. The perturbed film thickness h(r,θ, t) is given by
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yo e.Ze.sinre.cosr),r(h)t,,r(h ωωω ∆ϕ∆θϕ∆θθθ +−+=                                                         (4)

where 1i −= . The perturbed pressure field is expressed as
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where po represents the zeroth-order pressure field, and zp , 
x

pϕ , and 
y

pϕ  are the first-order pressure distributions

caused by the small perturbations. Expressions for the linearized zeroth- and first-order lubrication equations are
obtained by substituting Eq. (4) and Eq. (5) into Eq. (1). The zeroth-order lubrication equation has the following form.
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The first-order equation for axial displacement Z is expressed as
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The first-order equations for the dynamic angular displacements ϕx and ϕy around the X and Y axes are given by
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4. Finite Element Procedure for the Lubrication Equations

An efficient finite element procedure is implemented for the solution of the perturbed lubrication equations. The
solution procedure is based on the Galerkin weighted residual method and uses high-order shape functions
{ }

4321 ,,,j
e
j =

ψ , which are derived from an approximate solution to the non-linear Reynolds equation within an element

(Faria, 2001). The fluid flow domain within the seal lands is divided into four-node isoparametric finite elements Ωe

with boundary given by Γe. The zeroth-order pressure field is interpolated over the element domain in the following
form.
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where i
e
op  are the nodal values of pressure on the element (e). By employing the Galerkin weighted residual method

and substituting Eq. (10) into Eq. (6) render the following zeroth-order finite element system of asymmetric equations
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nm&  is the zeroth-order mass flow rate normal to the element boundary. A successive substitution procedure is
implemented to solve iteratively the system of zeroth-order finite element equations (Faria, 2001).



The finite element equations for the first-order pressures are obtained in a similar way. The pressures pz, x
pϕ , and

y
pϕ are interpolated within an element domain in the following form.
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Then the finite element first-order equation for axial displacements Z is expressed as
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The first-order mass flow rate outward the element boundary is given by 
nzm& .

The finite element systems of equations for the first-order equations for angular displacements ϕx and ϕy are given
by
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where 
nxm&  and 

nym&  are the first-order mass flow rates outward Γe.



5. Steady-State and Dynamic Performance Characteristics

The finite element equations (11), (15), (19) e (20) are assembled for the whole seal domain. The zeroth- and first-
order pressure fields are computed by solving the global finite element equations (Faria, 2001). Seal opening force (Fz)
and restoring moments (

yx
M,M ϕϕ ) are given by the following expression.
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where pref represents the reference pressure defined as the lowest pressure of the seal inner and outer pressures. The
dynamic force and moment coefficients are given by
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6. Numerical Results

Firstly, an analysis of a SGGFS case is carried out to validate the finite element procedure developed in this work.
Secondly, some dynamic performance characteristics are evaluated for an inward pumping spiral groove gas seal
employed in nitrogen pumps in order to study the influence of the angular misalignment and the face coning on the
behavior of grooved gas face seals.

6.1. Validation

An example of aligned high-speed SGGFS is selected to validate the FEM procedure implemented in this work.
The seal opening force and the static axial stiffness predicted by the FEM procedure are compared with computed
results presented by Gabriel (1994). The seal parameters are presented in Tab. (1). The speed number (Λ), which  is

shown in Tab. (1), is computed by 
26

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Table 1. SGGFS parameters for validation.

ri = 0.05842 m    (stationary grooves) c varies
rgi = 0.069 m Ω =28,600 rpm cg = 5 µm

ro = 0.07778 m ρ =1.12 kg/m3 µ =18x10-6 Pa.s
β =165o    Lubricant: Air pin = 0.1013 MPa

Ng = 10 grooves pout = 4.5852 MPa
αg = 0.5 Λ varies from 749 to 4688

Figures (4) and (5) depict the comparative results of seal opening force and axial static stiffness versus ridge
clearance computed for the seal parameters given in Tab. (1). The seal domain is modeled with 1100 finite elements.
There is a good agreement between the FEM predictions and the results presented by Gabriel (1994).

6.2. Performance Characteristics of SGGFSs

The influence of the static misalignment and the face coning on the performance characteristics of spirally grooved
gas face seals is analyzed at moderate and high speed numbers (Λ). The seal baseline geometry for this analysis is given
in Tab. (2), and represents a high speed inward pumping SGGFS employed in nitrogen pumps.



Table 2. Geometric and operating parameters for a SGGFS.

Stationary grooves
ri = 0.07112 m β = 160o pin = 0.101 MPa

rgi = 0.076454 m αg = 0.5 pout = 0.505 MPa
ro = 0.0889 m Ng =12 grooves Λ = 300 or 1253

c = cg = 2.54 µm µ = 10.963x10-6 Pa.s (Ω = 3600 or 15000 rpm)
Mesh: 1320 elements

(132 circumferential x 10 radial elements)

Firstly, some performance characteristics of a perfectly symmetric, aligned SGGFS operating at high speeds are
evaluated in relation to positive (γ>0) and negative (γ<0) coning angles.  The seal clearance at the outer radius increases
for (γ>0) and decreases for (γ<0) (see Figure (2)). Table (3) shows the normalization of the seal opening force ( zF ),
leakage flow rate (Q ), stiffness coefficients ( ijK ), and damping coefficients ( ijC ) employed in this analysis.

The seal performance characteristics are determined at moderate (Λ=300) and high speed numbers (Λ=1253), and
are depicted in relation to the dimensionless coning parameter coning parameter ( γ  ), which is defined as

( )c.180r.. oπγγ =    for  positive γ                 (30.a)

       ( )c.180r..5 oπγγ =   for  negative γ                                                                                    (30.b)
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Figure 4. Comparative results for seal opening force in a SGGFS.
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Figure 5. Comparative results for axial static stiffness in a SGGFS.



Table 3. Normalization parameters for seal performance characteristics.
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with different scales for negative and positive coning angles for graphical representation purpose. A negative γ  implies
the seal outer clearance decreases, while positive γ  increases the outer clearance. Rubbing contact between the seal
mating faces occurs at approximately γ = -0.008o. In this study, the minimum value of coning parameter corresponds to
an almost zero outer clearance (about 90% of reduction), while the maximum coning parameter corresponds to an outer
clearance four times larger than the seal inner clearance.

Figure (6) depicts the variation of Q  and zF  with the coning parameter at moderate (dashed line) and high speed
numbers (solid line). As the outer clearance decreases (γ decreases), the flow resistance increases resulting in higher
opening force and lower inward flow. Q and zF  increase as the speed number (Λ) increases due to the increase in the
hydrodynamic pressure over the seal domain. Figure (7) shows the static axial and angular stiffness and damping
coefficients versus coning parameter at moderate (dashed line) and high speed numbers (solid line).
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Figure 6.  Dimensionless opening force and inward flow rate versus coning paramete
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Figure 9. Dimensionless cross-coupled static force coefficients versus misalignment a

7. Conclusions

The finite element procedure implemented in this work is able to analyze spira
operating at high speeds accounting for the seal face static misalignment and conin
predict some steady-state performance characteristics, such as the seal opening force
dynamic performance characteristics, such as the stiffness and damping force co
presented in this work show the influence of the angular misalignment between sea
behavior of SGGFSs under stringent operating conditions. Angular misalignment 
coning are common features in gas face seals operating at high speeds. The analysi
large misalignment angles can induce negative direct angular damping coefficients
susceptible to angular motions. Negative or divergent face coning (γ < 0) also resul
and stiffness coefficients offering increasing resistance to rubbing contact between the
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