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Abstract. A novel alternative derivation of classic coning motion based on Euler angles is presented. This particular motion is often
used to assess candidate attitude determination algorithms for strapdown inertial navigation systems. The derivation is based on
rotating the body coordinate frame according to time-varying Euler angles related with body precession, spin rate, and cone half-
angle while the rotation vector remains orthogonal to the plane containing both the spin axis and the precession axis. Consequently,
for a desired cone half-angle and precession rate, the required spin rate vector is dictated by the precession vector. The derivation
builds on geometry-based reasoning that provides an insight into how classic coning motion develops in space.
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1. Introduction

Strapdown inertial navigation systems produce estimates of terrestrial position and velocity from specific force and
angular rate data provided by an inertial measurement unit rigidly attached to the vehicle body. It requires the
computation of the rotation matrix Cn

b  that transforms specific force sensed by the accelerometers from body frame Sb
to navigation frame Sn. The computation uses body-fixed rate gyro measurements to determine the body angular rate
with respect to the navigation frame. The computation of Cn

b , known as the attitude determination problem, calls for the
solution of (Bortz, 1971):
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where bn
bωωωω = ω ω ωxb yb zb

T
 is the angular rate vector of the body frame relative to the navigation frame represented

in the body frame. Attitude determination algorithms numerically solve Eq. (1), often using angular rate data in the form
of incremental angles. A major problem lies in the noncommutativity of finite rotations The differential equation and
corresponding rotation matrix, respectively, of the rotation vector r that aligns the reference frame Sn with body frame
Sb are clearly shown in Eqs. (2-3) (Bortz, 1971; Ignagni, 1990, 1994; Jiang, 1991, 1992; Lee, 1990; Lovren, 1998;
Miller, 1983; Shuster, 1993):
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The noncommutativity rate vector consists of the last two terms in the right-hand side of Eq. (2). Previous work
numerically solved approximations to the rotation vector differential equation at a fast rate in the interval

)T)1k(,kT[t +∈  from null initial conditions at the beginning of every interval T, and updated the rotation matrix in Eq.
(3), or its corresponding rotation quaternion, at a slower rate to reduce the computational workload (Ignagni, 1990,
1994; Jiang, 1992; Lee, 1990; Miller, 1983).

From Eq. (2), one notices that the attitude determination algorithm is tested under worst conditions when, given | ωωωω |
and |r|, these vectors are orthogonal. This reference motion is known as classic coning (Bortz, 1971; Jiang, 1991). It has
been used as an example of the application of Eq. (2) (Jiang, 1991), and in the optimization and evaluation of attitude
determination algorithms (Bortz, 1971; Ignagni, 1990, 1994; Jiang, 1992; Lee, 1990; Lovren, 1998; Miller, 1983). A
particular rotation vector history was substituted in Eq. (2), yielding the angular rate of the desired classic coning
motion (Bortz, 1971; Jiang, 1991). A quaternion-based derivation can be found in (Miller, 1983). However, previous
work on attitude determination lacks a clear, physically intuitive description of the temporal evolution in three-
dimensional (3D) space of a body undergoing classic coning motion.

The focus here is on the derivation of classic coning motion to provide an insight into the body evolution in 3D
space. The derivation builds on the direction cosine matrix that results from rotating the body coordinate frame
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according to appropriate Euler angles. The Euler angles are related to precession rate vector nẑΩ , cone half-angle r, and
body spin rate vector bẑφ! . Figure 1 depicts the fixed reference frame Sn={ nnn zyx ˆ,ˆ,ˆ }. The body frame
Sb={ bbb zyx ˆ,ˆ,ˆ } is depicted only by bẑ  for the sake of simplicity. The body rotates about its spin axis bẑ , which
simultaneously precesses about axis nẑ  and maintains a constant cone half-angle angle r. It will be seen that classic
coning motion constrains the rotation vector r to be orthogonal to both the precession axis nẑ  and the body spin axis

bẑ . The orthogonality constraint imposes that a condition be satisfied by the spin rate vector bẑφ! . Evaluation of
candidate attitude determination algorithms under the conditions of classic coning motion is then straightforward: the
representation of the angular rate in body frame coordinates, namely bn

bωωωω , is employed as the ground-truth input signal
to the strapdown rate gyros when simulating the operation of a strapdown navigation system ((Bortz, 1971; Ignagni,
1990, 1994; Jiang, 1992; Lee, 1990; Lovren, 1998; Miller, 1983).

Figure 1 - Coning motion: body spins with rate φ!  about its spin axis bẑ , which simultaneously precesses with rate Ω
about precession axis nẑ .

2. Derivation of Coning Motion

The following sequence of Euler angles rotate the reference frame Sn into alignment with body frame Sb :

bbnn Sˆt'ˆrˆtS →→→Ω→ zyz φφφφ! (4)

where the hat superscript indicates unit magnitude. The cone half-angle r between bẑ (t) and nẑ  is represented as a
rotation about the intermediate unit vector 'ŷ (t), as shown in Figure 1. From the corresponding piogram (Pio, 1966), the
direction cosine matrix that transforms from Sn to Sb is:
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The precession rate vector is represented in Sb as:
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and hence the body angular rate vector representation in Sb becomes:
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By definition, classic coning motion must yield a rotation vector r(t) orthogonal to bnωωωω  − therefore to both
components of bnωωωω  in the right-hand side of the first equality in Eq. (7). Hence, r(t) must be orthogonal to both the spin
and precession axes, bẑ (t) and nẑ , respectively. In other words, r(t) is orthogonal to the rotating plane nb zz ˆˆ  precessing
with rate Ω nẑ . Consequently, r(t) is in the intersection of plane nnyx ˆˆ  with the rotating plane bbyx ˆˆ , the latter also
precessing with rate nẑΩ . Thus, r(t) must be along 'ŷ (t), and precessing with rate Ω nẑ  in the nnyx ˆˆ  plane. For nẑ  to
align with bẑ (t) upon application of rotation vector r(t) and simultaneously comply with the aforementioned
constraints, it is required that the magnitude of r(t) be the cone half-angle r. From the rotation sequence in Eq. (4), the
initial condition r(0) is parallel to nŷ . Therefore, the rotation vector r(t) is represented in the reference frame Sn as:
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and the time argument has been dropped for the sake of simplicity. Recalling Eq. (5), orthogonality of the above r(t)
relative to spin axis bẑ (t) can be verified by:
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The spin rate φ!  in Eq. (7) remains to be determined. From the rotation sequence in Eq. (4) and examination of
Figure 1, the following two constraints occur simultaneously:

Constraint C1: At any instant t, nŷ  rotates about )t(ˆ)t('ˆ ry =  describing a cone with half-angle Ωt  until alignment
with bŷ (t).

Constraint C2: At any instant t, nx̂  rotates about )t(ˆ)t('ˆ ry =  describing a cone with half-angle Ωt + π/ 2  until
alignment with bx̂ (t).

Analysis of constraints C1 and C2 leads to the following relations, respectively:

)t(cˆˆ Ω⋅ =ry b (10a)

)t(s)2/t(cˆˆ Ω−=π+Ω⋅ =rxb              (10b)

From Eq. (10a) and consideration of Eqs. (5) and (8):
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From the last equation results the following constraint on the spin rate vector φ! :

⇒Ω=φ )t(c)t(c !
bẑΩ±=φφφφ! (12)

Proceeding likewise with regard to Eq. (10b) produces:
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and, after comparison with Eq. (12), the following disambiguation results:

⇒Ω−=φ )t(s)t(s !
bẑΩ−=φφφφ! (14)

The above spin rate vector is a consequence of constraining r(t) to be orthogonal to the rotating plane nb zz ˆˆ . Figure
2 shows the solution. Substitution of Eq. (14) in Eq. (7) yields the desired angular rate vector of classic coning motion
represented in the body coordinate frame:
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Figure 2- Classic coning motion: spin axis bẑ  precesses with rate Ω  about precession axis nẑ , maintains constant cone
half-angle angle r, and body spin rate Ω−=φ!  about spin axis.

The orthogonality between the rotation vector and the above angular rate vector can be inspected by recalling
Eqs. (8) and (5), and substitution of Eqs. (14) and (15):
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An analogous derivation, this time with the precession rate vector -Ω nẑ , yields:
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which is recognized as the angular rate vector usually appearing in the related literature. The motion of angular rate
vector bnωωωω  in space defines a time-varying rotation axis. Figure 3 shows the spatial and body cones generated by bnωωωω  in
Eq. (15). The spatial cone shows the precession of bnωωωω  about nẑ  as seen by an observer in Sn. The body cone shows
the motion of bnωωωω  from the point of view of an observer spinning with Sb. The body cone rolls on the surface of the
spatial cone, and bnωωωω  lies along the contact line between both cones. The arrows indicate the spin direction about bẑ
and the motion of the contact line on the surface of the spatial cone. The cones have no relative motion along the
rotation axis; the body cone spins in synch with its rolling motion on the surface of the spatial cone because both
movements have frequency Ω .



Figure 3 - Body and spatial cones (see Eq.(15)).

3. Conclusion

Classic coning motion is best described as a fairly particular sort of spinning body undergoing precession
subject to the rotation vector being orthogonal to the angular rate vector. This work derived the classic coning motion
via analysis of a rotation sequence with the appropriate Euler angles. Use of geometry-based reasoning provided an
insight into how this particular motion evolves in 3D space. This specific motion is useful to evaluate the accuracy and
robustness to finite rotation noncommutativity of candidate attitude determination algorithms for use in inertial
navigation systems.
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