ESTUDO COMPARATIVO DE DIFERENTES MÉTODOS DE DESACOPLAMENTO PRESSÃO-VELOCIDADE NAS EQUAÇÕES DE NAVIER-STOKES

José E. Rengel H. Silvio B. C. Martins Astrid M. Barros Sergio H. Sphaier Universidade Federal de Rio de Janeiro, Programa de Engenharia Oceânica, COPPE Departamento de Engenharia Naval e Oceânica, Escola de Engenharia Cx. P. 68508, 21945-970, RJ, Brasil

Resumo. Para superar a dependência entre a pressão e a velocidade nas equações de Navier-Stokes (ENS), diferentes esquemas numéricos têm sido desenvolvidos, destacando-se o Método da Projeção (Chorin, 1968), que divide a solução do problema em três partes, resolvidas em cada passo de tempo sem empregar um processo iterativo local. Novos algoritmos têm sido desenvolvidos visando melhorar o desempenho e precisão da solução. Neste contexto, Patera (1984) e Karniadakis et. al. (1991) propuseram o Método da Partição de Alta Ordem ("High-Order Splitting Method").

Neste trabalho, aplica-se uma variante do esquema da projeção original e o esquema de alta ordem acima mencionado para simular os escoamentos isotérmicos em uma cavidade com tampa deslizante e em um degrau. Empregou-se o método dos volumes finitos para discretizar as equações envolvidas, um esquema temporal explícito de Adam-Bashforth associado a uma interpolação espacial de quarta ordem para os termos convectivos e um esquema implícito de Crank-Nicolson combinado com um esquema de diferenças centradas para os termos difusivos. Observa-se melhor concordância dos resultados obtidos pelo Método da Projeção quando comparados com soluções "benchmark" disponíveis na literatura.

Palavras-chave: Método da Projeção, Método da Partição de Alta Ordem, Volumes Finitos

1. INTRODUÇÃO

Em fluidos incompressíveis a pressão é uma variável dinâmica que, em um escoamento transitório, se auto-ajusta instantaneamente. Porém sua evolução temporal não aparece explicitada na formulação em variáveis primitivas das ENS, ao contrário do que ocorre com a velocidade. Desta forma, ao aplicar um esquema de solução no qual as versões discretas das ENS e da continuidade são resolvidas simultaneamente a fim de se obter os campos de pressão

e velocidade, é preciso resolver um sistema de equações algébricas mal condicionado, o que reduz grandemente a possibilidade de se usar esquemas iterativos eficientes.

Com a finalidade de superar esta dificuldade, diferentes esquemas que desacoplam a solução do campo de velocidades da solução do campo de pressão têm sido desenvolvidos e reportados na literatura (ver Williams et. al., 1996). Entre estes esquemas está o método da projeção (Chorin, 1968), que se tornou bastante popular em simulações de escoamentos transitórios.

O esquema originalmente proposto por Chorin é composto de três operações seqüenciais: computação de um campo de velocidades intermediário ou provisório usando os termos não lineares e viscosos na equação de *momentum* sem levar em conta o campo de pressão; cálculo do campo de pressão resolvendo uma equação de Poisson; e finalmente, projeção da velocidade intermediária sobre um espaço de divergência zero usando o gradiente da pressão.

A partir da proposta original de Chorin têm-se desenvolvido novos métodos de desacoplamento que visam melhorar o desempenho e precisão da solução, entre os quais está a Partição de Alta Ordem (Patera., 1984), que conduz à solução de três equações para a representação da pressão e do campo de velocidades: uma equação de onda, uma equação de Poisson e uma equação de Helmholtz; e, cálculo do gradiente de pressão na equação de *momentum* em cada passo de tempo, usando os valores do passo anterior (Zang et. al., 1994), o que permite obter um esquema de alta ordem no tempo. Deve-se resaltar que Guermond e Quaterpelle (1998) observaram que é necessário que a ordem da interpolação usada para a pressão seja menor que a usada para a velocidade a fim de evitar oscilações não físicas da pressão reduzindo dessa forma a precisão espacial.

Neste trabalho, aplicam-se o esquema da Projeção e o esquema de Alta Ordem de Patera para resolver as ENS, os quais não apresentam oscilações irreais da pressão embora se usem interpolações da mesma ordem para pressão e velocidade. Os resultados desses esquemas são comparados entre si através da aplicação dos mesmos na simulação dos escoamentos isotérmicos em uma cavidade com tampa deslizante e em um degrau ("backward facing step").

2. MODELO MATEMÁTICO

Quando se deseja conhecer o campo de velocidades, $\vec{V}(\vec{x},t)$, e/ou de pressão, $P(\vec{x},t)$, de um escoamento incompressível, viscoso e isotérmico, em um domínio Ω com contornos Γ , usam-se as equações da quantidade de movimento em conjunto com a equação da continuidade. Denotando o número de Reynolds por Re = ${}^{U_{\infty}L}_{/v}$, estas equações, formuladas em um sistema de referência euleriano e escritas na sua forma vetorial e adimensional, são, respectivamente:

$$\frac{\partial \vec{V}}{\partial t} + \nabla \cdot (\vec{V}\vec{V}) = -\nabla P + \frac{1}{Re} \nabla^2 \vec{V}$$
(1)

$$\nabla \cdot \vec{\mathbf{V}} = 0 \tag{2}$$

onde U_{∞} e L representam, respectivamente, uma velocidade e um comprimento caraterístico do escoamento; e v é a viscosidade cinemática do fluido.

Estas equações, quando usadas para obter soluções numéricas de um escoamento, requerem a definição de condições iniciais e de contorno que representem apropriadamente a física do problema que elas descrevem. Na maioria dos casos as condições de contornos usadas para resolver as ENS estão associadas à velocidade, já que normalmente a física do

problema não provê informação alguma sobre como deve ser a pressão nos contornos exceto em alguns casos. No presente trabalho será necessário especificar condições de velocidades em planos que representam entrada de escoamento, paredes e em contornos abertos introduzidos para reduzir o domínio computacional. Para cada variável, a pressão e as componentes da velocidade, o contorno Γ é subdividido em Γ_D , onde condições de contorno do tipo de Dirichlet são aplicadas, e Γ_N onde são aplicadas condições de contorno do tipo de Neumann.

Em planos que representam entrada de fluido a velocidade é especificada diretamente. Sendo $\vec{g}(\vec{x},t)$ uma função conhecida , tem-se:

$$\vec{\mathbf{V}} = \vec{\mathbf{g}}(\vec{\mathbf{x}}, \mathbf{t})$$
 $\vec{\mathbf{x}} \in \Gamma_{\mathrm{D}}$

No caso de superfícies que representam paredes fixas a velocidade é nula:

$$\vec{V} = 0$$
 $\vec{x} \in \Gamma_D$

Para contornos abertos, através do qual o fluido deixa o domínio, usa-se:

$$\frac{\partial V_{\eta}}{\partial \eta} = 0 \qquad e \qquad \frac{\partial V_{\tau}}{\partial \eta} = 0 \qquad \vec{x} \in \Gamma_{N}$$

Para simular a evolução no tempo, define-se um valor inicial para o campo de velocidade:

$$\vec{V}_i(\vec{x}) = \vec{w}_i(\vec{x}, t=0) \qquad \qquad \vec{x} \in \Omega + \Gamma$$

com: $\nabla \cdot \vec{V}_i(\vec{x}) = 0$ $\vec{x} \in \Omega$

$$\vec{V}_i \cdot \vec{\eta} = \vec{w}_i \cdot \vec{\eta}$$
 $\vec{x} \in \Gamma$

3. DESACOPLAMENTO PRESSÃO-VELOCIDADE

3.1. Método da Projeção

No método da projeção (Chorin, 1968), as ENS são divididas ("split") em uma equação convecção-difusão (equação de Burger) e uma equação de Poisson. A equação de Burgers, é obtida ao descartar o termo da pressão nas equações de *momentum*, e através dela é possível se obter, num primeiro passo, um campo de velocidades intermediário. Este campo de velocidades aproximado é usado para avaliar o campo de pressão usando uma equação de Poisson. Para garantir um campo de velocidade com divergência zero, a velocidade intermediária é corrigida pelo gradiente de pressão.

Com o intuito de avançar a solução para o instante de tempo $t + \Delta t$ (t_{n+1}) usando a solução no instante atual t (t_n) e no instante prévio $t - \Delta t$ (t_{n-1}) , as ENS são integradas no tempo. Para a equação da continuidade (2), obtém-se:

$$\nabla \cdot \vec{\mathbf{V}}^{\mathbf{n}+1} = 0 \tag{3}$$

Da mesma forma, ao integrar a equação da quantidade de movimento (2), usando o esquema explícito Adams-Bashforth de segunda ordem nos termos convectivos e o esquema implícito de segunda ordem Crank-Nicolson nos termos difusivos, tem-se:

$$\frac{\vec{\mathbf{V}}^{n+1} - \vec{\mathbf{V}}^{n}}{\Delta t} + \left[\frac{3}{2}\nabla \cdot \left(\vec{\mathbf{V}}\vec{\mathbf{V}}\right)^{n} - \frac{1}{2}\nabla \cdot \left(\vec{\mathbf{V}}\vec{\mathbf{V}}\right)^{n-1}\right] = -\nabla \mathbf{P}^{n+1} + \frac{1}{\mathrm{Re}}\left[\frac{1}{2}\left(\nabla^{2}\vec{\mathbf{V}}^{n+1}\right) + \frac{1}{2}\left(\nabla^{2}\vec{\mathbf{V}}^{n}\right)\right]$$
(4)

A equação (4) é resolvida sem levar em conta a pressão resultando num campo de velocidade intermediário $\hat{\vec{V}}$, que não satisfaz a equação da continuidade. A equação de Burgers envolvida pode-se escrever da seguinte maneira:

$$\frac{\vec{\vec{V}}^{n+1} - \vec{V}^n}{\Delta t} + \left[\frac{3}{2}\nabla \cdot \left(\vec{V}\vec{V}\right)^n - \frac{1}{2}\nabla \cdot \left(\vec{V}\vec{V}\right)^{n-1}\right] = \frac{1}{\text{Re}}\left[\frac{1}{2}\left(\nabla^2 \vec{\vec{V}}^{n+1}\right) + \frac{1}{2}\left(\nabla^2 \vec{V}^n\right)\right]$$
(5)

onde $\nabla \cdot \hat{\vec{V}}^{n+1} \neq 0$.

Subtraindo a equação (5) da equação (4), e reorganizando a equação resultante obtém-se:

$$\hat{\vec{V}}^{n+1} = \vec{V}^{n+1} + \Delta t \left\{ \nabla P^{n+1} - \frac{1}{Re} \left[\frac{1}{2} \left(\nabla^2 \vec{V}^{n+1} \right) - \frac{1}{2} \left(\nabla^2 \hat{\vec{V}}^{n+1} \right) \right] \right\}$$
(6)

que se pode escrever, convenientemente, da forma:

$$\vec{\mathbf{V}}^{n+1} = \vec{\mathbf{V}}^{n+1} + \nabla \boldsymbol{\phi} \tag{7}$$

Aplicando-se o divergente à equação (7), e usando a equação (3), obtém-se uma equação de Poisson para o escalar ϕ :

$$\nabla^2 \phi = \nabla \cdot \hat{\vec{\mathbf{V}}}^{n+1} \tag{8}$$

A solução desta equação é de vital importância no método, já que é através dela que se impôs a condição de incompressibilidade.

As equações (5), (8) e (7), usam-se para obter o campo de velocidade no novo instante de tempo. Para calcular a pressão nesse instante de tempo é preciso achar sua relação com o campo escalar ϕ , que depende dos esquemas usados para discretizar, no tempo, as ENS. Neste trabalho usa-se a expressão simplificada $P^{n+1} = \phi_{\Delta t}$, que produz bons resultados desde que $\hat{\vec{V}}$ esteja perto da condição de divergência zero (Braza et. al., 1986).

3.2. Método da Partição de Alta Ordem

O Método de Partição de Alta Ordem para solução do sistema ENS consiste em decompor o problema em três problemas mais simples :

$$\frac{\hat{\vec{V}}^{n+1} - \vec{V}^n}{\Delta t} = -\nabla \cdot \left(\vec{V}\vec{V}\right) \tag{9}$$

$$\frac{\hat{\vec{V}}^{n+1} - \hat{\vec{V}}^n}{\Delta t} = -\nabla P \tag{10}$$

$$\frac{\vec{V}^{n+1} - \hat{\vec{V}}^n}{\Delta t} = -\frac{1}{Re} \nabla^2 \vec{V}$$
(11)

onde $\hat{\vec{V}}$ e $\hat{\vec{V}}$ são velocidades intermediárias definidas por (9) e (10).

Deve-se agora satisfazer a condição de continuidade $\nabla \cdot \hat{\vec{V}} = 0$. Introduzindo esta condição na equação (10), obtém-se:

$$\nabla \cdot \left(\frac{\hat{\vec{\mathbf{V}}}^{n}}{\Delta t}\right) = \nabla^{2} \mathbf{P}^{n+1}$$
(12)

Utilizando um esquema de Crank-Nicolson para o termo difusivo e um esquema de Adam-Brashforth para o termo convectivo, tem-se:

$$\frac{\vec{\tilde{V}}^{n+1} - \vec{V}^n}{\Delta t} = -\frac{3}{2}\nabla \cdot \left(\vec{V}\vec{V}\right)^n + \frac{1}{2}\nabla \cdot \left(\vec{V}\vec{V}\right)^{n-1}$$
(13)

$$\nabla \cdot \left(\frac{\hat{\vec{\nabla}}^{n}}{\Delta t}\right) = \nabla^{2} \mathbf{P}^{n+1}$$
(14)

$$\frac{\vec{V}^{n+1} - \hat{\vec{V}}^{n}}{\Delta t} = \frac{1}{\text{Re}} \frac{1}{2} \left[\nabla^{2} \vec{V}^{n+1} + \nabla^{2} \vec{V}^{n} \right]$$
(15)

3.3. Condições de contorno das variáveis auxiliares

As condições de contorno para as variáveis intermediárias $\hat{\vec{V}}$, $\hat{\vec{V}}$ e ϕ ou P, devem ser escolhidas de forma consistente com as equações governantes, caso contrário, a solução pode sofrer apreciáveis erros numéricos. Gresho et. al. (1987), mostram que as condições de contorno para o escalar, necessárias para satisfazer a condição de incompressibilidade do fluido, são do tipo de Neumann quando as condições de contornos para velocidade forem do tipo de Dirichlet. Se a condição de contorno para a velocidade é tipo Neumann, costuma-se usar condições tipo Diritchlet para o escalar (ϕ ou P), Gresho (1990). Baseado nisto, é comum usar as seguintes condições de contorno:

- 1. Para $\hat{\vec{V}} = \hat{\vec{V}}$, as mesmas condições de contorno prescritas para \vec{V} .
- 2. As condições para ϕ são determinadas pelo tipo de condição usada para $\hat{\vec{V}}$;
 - a. Se $\vec{V}^* = \vec{W}$ em Γ_D , então, projetando a normal da equação (7) nesse contorno, temse: $\frac{\partial \phi}{\partial n} = 0$

b. Se a condição de contorno para a velocidade é tipo Neumann, costuma-se usar $\phi = 0$. No método de partição de alta ordem, usam-se, para a pressão, as mesmas condições de ϕ .

4. RESULTADOS

São resolvidos os casos de escoamentos numa cavidade com movimento da tampa e em um ressalto hidráulico (degrau). Estes problemas, considerados "benchmark" para simulações numéricas das equações de Navier-Stokes, têm sido objetos de muitos estudos que têm produzido uma grande quantidade de resultados numéricos e em alguns casos de laboratórios.

Dois códigos que usam o método dos volumes finitos foram escritos: o primeiro para o Método da Projeção e o segundo para o Método da Partição de Alta Ordem.

4.1. Escoamento numa cavidade

Simulou-se o escoamento na cavidade para um número de Reynolds igual a 1000. Na figura 1, apresenta-se a geometria do problema e as condições de contornos usadas nos testes. Nessa mesma figura mostra-se a nomenclatura usada para identificar os centros dos vórtices formados; os quais vão servir de parâmetros para verificar a eficâcia dos esquemas implementados na simulação deste problema. Os perfis de velocidades nos eixos centrais da cavidade também são usados para este fim.

Fig. 1. Geometria, condições de contorno e nomenclatura usada.

Além das condições de contornos mostradas na figura 1, especificou-se uma pressão dinâmica igual a zero no volume finito localizado no canto superior direito da cavidade; esta condição é imposta para controlar o campo de pressão. Assume-se um fluido inicialmente em repouso o qual sai dessa condição pelo movimento da parede superior; os testes terminam quando a máxima diferença entre velocidades para dois passos de tempo consecutivos for menor que 10⁻⁸ (critério de parada). O número de Reynolds é definido como Re = U_0L/ν , onde U_0 é a velocidade do fluido no topo, L é o comprimento dos lados e ν é a viscosidade cinemática do fluido.

Os resultados obtidos, são comparados com os apresentados no trabalho de Ghia et al. (1982), que são considerado "benchmark". A tabela 1 apresenta as coordenadas dos centros dos vórtices para Reynolds 1000, obtidas com os métodos implementados, comparados com

os reportados por Ghia et al.. A concordância é muito boa para o método da Projeção mas apenas boa para o método de Alta Ordem.

Os perfis de velocidade na cavidade para Re = 1000, são mostrados nas figuras 2 e 3 para **u** ao longo de x = 0.5L e **v** ao longo de y = 0.5L, respectivamente. Nestas figuras, os resultados dos métodos implementados comparam-se aos obtidos por Ghia et al. Enquanto Ghia et al. usam uma malha uniforme 129x129 neste estudo usa-se uma malha de 41x41 volumes. Pode-se notar a boa concordância dos resultados apesar de se usar uma malha um tanto grosseira quando comparada com a usada por Ghia et al. Todas as características ou particularidades das curvas estão também presentes em outras publicações usando o mesmo exemplo.

Coordenada	Alta Ordem Projeção		Ghia et al.
	(41x41)	(41x41)	(129x129)
хс	0.550	0.533	0.5313
yc	0.545	0.567	0.5625
xr	0.895	0.865	0.8594
yr	0.06	0.112	0.1094
xl	0.080	0.078	0.0859
yl	0.081	0.078	0.0781

Tabela 1. Comparação da Posição do Centro dos Vórtices para Re = 1000.

Fig. 2. Distribuição da Componente u da Velocidade em x = 0.5 L

Fig. 3. Distribuição da Componente v da Velocidade em y = 0.5 L.

4.2 Escoamento num ressalto hidráulico (degrau)

O segundo caso estudado neste trabalho trata-se do escoamento laminar de um fluido viscoso e incompressível através de um degrau. A simulação deste escoamento pretende capturar as fortes recirculações que acontecem tanto na parede inferior do canal quanto na superior. As coordenadas dos pontos de separação e reunificação ou realinhamento do

escoamento, assim como o perfil de velocidade uma posição do canal, são usadas para determinar a precisão ou não dos códigos numéricos implementados. Para comparar, toma-se como referência os resultados experimentais de Armaly et al. (1983) e os resultados numéricos obtidos por Gartling (1990) e por Pérez e Cotta (1995)

A figura 4 mostra uma representação esquemática de um degrau, onde se especificam as dimensões e condições de contorno usadas no presente trabalho. A nomenclatura usada para identificar as coordenadas dos pontos de separação e realinhamento também apresenta-se nesta figura. O número de Reynolds é definido tomando-se como base a altura do canal no contorno de saída e a velocidade média na entrada, quer dizer $\text{Re} = U_0 \text{H/v}$. Neste estudo, tanto a altura quanto a velocidade média na entrada têm valor unitário. Utiliza-se uma malha uniforme ortogonal com 400x32 volumes, um pouco menos refinada que a de Gartling, que usa 400x40 (de x = 0 a x = 15) na sua malha mais fina (129681 nós).

A figura 5, mostra as coordenadas dos pontos de realinhamento e separação obtidos para diferentes números de Reynolds com os dois métodos implementados junto com os resultados experimentais de Armaly et al. (1983); os resultados mostram boa concordancia até Re = 400, depois desse Reynolds aumenta a discrepância; pode-se creditar esta discrepância aos efeitos tridimensionais presentes nos experimentos de Armaly et al.. Estas coordenadas são apresentadas na tabela 2, para Re = 800, junto com os resultados numéricos de Gartling (1990) e Pérez e Cotta (1995). Ambos métodos concordam com os resultados tidos como "benchmark".

Fig. 4. Geometria, condições de contorno e nomenclatura usada no testes com o degrau.

Fig. 5. Variação dos pontos de separação e realinhamento com o Nº de Reynolds

	1 5	Gartling	Projeção	Alta Ordem
ſ	X1	6.10	6.00	5.90
	X2	4.85	4.86	4.82
	X 3	10.48	10.35	10.39

Tabela 2. Comparação das Características Calculadas a Re = 800

Na figura 6 apresenta-se a componente horizontal da velocidade, u, na posição do canal x=7. Aqui compara-se estas velocidades com as obtidas por Gartling (1990) e Pérez e Cotta (1995), a alta precisão mostrada nestes resultados confirma uma vez mais o bom desempenho dos esquemas numéricos implementados.

Fig. 6. Comparação da Componente u da Velocidade no Canal em x=7, Re=800

5. CONCLUSÕES

Este trabalho consiste na aplicação dos métodos da Projeção e de Partição de Alta Ordem no estudo de dois problemas clássicos: o escoamento na cavidade, dominantemente difusivo, e o escoamento no degrau, dominantemente convectivo.

Em todos os dois casos o Método da Projeção apresentou resultados de muito boa precisão, confirmando ser eficiente para resolver problemas convectivo-dominantes e problemas difusivo-dominantes. Já o Método de Alta Ordem apresenta bons resultados apenas para o caso do degrau. Isto parece indicar que este método é mais adequado a escoamentos dominantemente convectivos, merecendo uma análise futura mais detalhada.

O método da Projeção produz excelentes resultados em toda a faixa de Reynolds estudada. Por outro lado pode-se notar que o método da Partição de Alta Ordem implementado tende a melhorar sua precisão a medida que temos Reynolds mais altos.

6. REFERÊNCIAS

- Armaly, B. F., Durst, F., Pereira, J. C. F. et. al., 1983, "Experimental and Theoretical Investigation of Backward-Facing Step Flow", *J. Fluid Mech.*, v. 127, pp. 473-496
- Braza, M., Chassaing, P., Ha Minh, H., 1986, "Numerical Study and Physical Analysis of

the Pressure and Velocity Fields in the Near Wake of a Circular Cylinder", *J. Fluid Mech.*, v. 165, pp. 79-130

- Chorin, A. J., 1968, "Numerical Solution of the Navier-Stokes Equations", *Mathematics of Computation*, v. 23, pp. 745-762
- Gartling, D. K., 1990, "A Test Problem for Outflow Boundary Conditions Flow Over a Backward-Facing Step", *Int. J. Numer. Methods Fluids*, v. 11, pp. 953-967
- Ghia, U., Ghia, K. N., Shin, C. T., 1982, "High-Re Solutions for Incompressible Flow using the Navier-Stokes Equations and a Multigrid Method", *J. Computational Physics*, v. 48, pp. 387-410
- Gresho, P. M., 1990, "On the Theory of Semi-Implicit Projection Methods for Viscous Incompressible Flow and Its Implementation Via a Finite Element Method that also Introduces a Nearly Consistent Mass Matrix. Part 1: Theory", *Int. J. Numer. Methods Fluids*, v. 11, pp. 587-620
- Gresho, P. M., Sani, R. L., 1987, "On Pressure Boundary Conditions for the Incompressible Navier-Stokes Equations", *Int. J. Numer. Methods Fluids*, v. 7, pp. 1111-1145
- Gresho, P. M., Sani, R. L., 1990, "Introducing Four Benchmark Solutions", Int. J. Numer. Methods Fluids, v. 11, pp. 951-952
- Guermond, J. L., Quaterpelle, L., 1998, "On Stability and Convergence of Projection Methods based on Pressured Poisson Equation", *Int. J. Numer. Meth. Fluids*, v. 26, pp. 1039-1053
- Karniadakis, G. E., Israeli, M., Orzag, S. A., 1991, "High-Order Splitting Methods for Incompressible Navier-Stokes Equations", *Journal of Computational Physics*, v. 97, pp. 414-443
- Orzag, S. A., Israeli, M., Deville, M. O., 1986, "Boundary Conditions for Incompressible Flows", J. Scientific Computing, v. 1, No. 1, pp. 75-111
- Patera, A. T., 1984, "A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion", *Journal of Computational Physics*, v. 97, pp. 414-443
- Pérez Guerrero, J. S., Cotta, R. M., 1996, "Benchmark Integral Transform Results for Flow Over a Backward-Facing Step", *Computers & Fluids*, v. 25, No. 5, pp. 527-540
- Williams, P. T., Baker, A. J., 1996, "Incompressible Computational Fluid Dynamics and the Continuity Constraint Method for the Three-dimensional Navier-Stokes Equations", *Numerical Heat Transfer*, v. 29, No. 2, pp. 137-273
- Zang, Y., Street, R. L., Koseff, J. R., 1994, "A Non-Staggered Grid, Fractional Step Method for Time Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates", *Journal of Computational Physics*, v. 114, pp. 18-33