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Abstract. Despite the high costs operations and the skilled labor lack, production processes require robots to improve 

efficiency in assembly and disassembly lines. Historically, the robot programming is based on a set of predefined 

sequential actions. In this case, devices and sensors are connected to the robot controller and the programming of the 

shares is held directly by its internal software. This type of programming is usually fixed and has few or none flexibility 

in handling concern, requiring the equipment reprogramming for new trajectories. On the other hand, several studies 

have shown artificial intelligence techniques such as neural nets, genetic algorithms, automated planning as 

enhancement proposals for practical systems. Automated planners emerged in 1971 in the STRIPS or “Stanford Research 

Institute Problem Solver” with the first automatic solver problems. The automated planners’ development created a 

standard formal language called PDDL or “Planning Domain Definition Language”. In 2008, itSIMPLE emerged as a 

knowledge engineering tool used for modeling planning domains to several automated planners, in order to develop a 

plan that meets the requirements of the project. This paper proposes the integration of automated planners with robots 

control systems through itSIMPLE for assembly and disassembly processes. Such integration uses an especially device 

made for this project, which is responsible for translating the sensors’ information into actual states. The automated 

planners use these states and the generated plan is converted into a list of instructions (jobs) that is sent to the robot. 

Finally, a comparison will be made with the traditional method of programming and robot's training.  

Keywords: Products assembly and disassembly system, Automation Applied, Automated Planning, itSIMPLE, 

Industrial Robot. 

1. INTRODUCTION

In the sixteenth century, manufacturing systems were handmade, made in small shops, and the products were relatively 

simple compared to today's standard. Over time, emergence mass production and factories were created, with many 

workers in one place. With that, the craftwork techniques gave space to the production lines. The products become more 

complex, as well as processed. Workers needed to specialize in tasks instead of overseeing the entire production. They 

became responsible for a part of the job. More accurate planning and better coordination was needed so that it could 

monitor the progress in factories. Today, production systems are necessary to sustain the life of civil society. The modern 

manufacturing enterprises who manage them must consider the economic realities of the modern world. In the production 

process, which seeks to improve the efficiency, proves to be increasingly required the use of automation such as robotics. 

A robot is a device or group of devices, electromechanical and biomechanical able to perform work autonomously or 

pre-programmed. Robots commonly perform tasks in poorly lit, dirty or dangerous for humans. Industrial robots used in 

production lines are the most common robots, but there are other applications such as toxic waste treatment, underwater 

and space exploration, surgery, mining, search and rescue, and locating landmines. The robots also appear in 

entertainment and chores areas. Currently, the robot programming is based on a set of pre-defined sequential actions. This 

programming is usually fixed and has few or none flexibility and other movements require the device reprogramming. 

This generates high costs with hand labor (only qualified personnel perform the programming), loss in production due 

the stops for reprogramming and the robot training with technical difficulties. Therefore, more complex programming 

changes and software maintenance are restricted to the manufacturer. On the other hand, in a few years, several studies 

have demonstrated artificial intelligence techniques such as neural networks, genetic algorithms, and automated planning 

as improvement proposals for practical systems. 

Almost 40 years ago began the developing of automated planning systems, but their implementation is still restricted 

and often is a challenge due real applications languages differs significantly from automated planning ones (Vaquero, 
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2007). Since 1971, with the emergence of the STRIPS (Stanford Research Institute Problem Solver) (Fikes, Nilsson, 

1971), based on logical systems are created to solve problems automatically. The concept of these systems is the existence 

of a real system model describing the actions and rules for each object that composes a set of inputs (baseline) and a 

desired state (final state). This model makes use of search algorithms applied with the model rules to find a path that starts 

from the set of inputs and achieve the desired state. 

While the automated planning presents a plan for a specific case in a restrict language called Planning Domain 

Definition Language (PDDL) (Fox and Long, 2003), the real systems uses equipment like Programmable Logic Controller 

(PLC) with Ladder language, usually and centralize operations sensing and drives. In 2008, itSIMPLE software was 

developed as a knowledge engineering tool used for modeling planning domains for several automated planners, in order 

to assist automated planner usage. 

The status of the industry makes attractive the possibility of using artificial intelligence methods to solve their 

problems. On the other hand, it is fact that the solutions approach to automated planning is rarely used in real systems, 

especially with robots. The reason of this gap is the existence of a wide abyss between these developments, making it 

difficult for new technologies and approaches as automated planners to be conveniently integrated in real systems. This 

paper presents the integration of automated planners in assembly and disassembly robot system through itSIMPLE. 

Firstly, it will be presented a brief literature overview composed by industrial robots definition, the programming robot 

state of the art, the automated planning, the itSIMPLE system and the planning in robotics. After that, it will be shown a 

case study focusing on the traditional programming method for this system and its modeling in itSIMPLE. Finally, the 

evaluation of traditional and automated planning programming, the scenarios and the generated plans will be presented. 

Comments about conclusions and further works wind up the paper. 

2. LITERATURE OVERVIEW

2.1 Industrial Robots 

It is known that the production systems use both mechanized and automated devices to perform several tasks in a 

manufacturing cell. Furthermore, the advancement of production automation in the last years is directly linked with the 

advances in robotics (Groover, 2011). 

The word “robot” comes from the Czech robota, which means, “forced labor”. The image of the robot present in our 

mind originates in a part of the Czech playwright Karel Capek, in which there was an automaton with human form, able 

to do everything that a man could do. According to the official definition of the Robotics Industries Association (RIA), 

an industrial robot is a reprogrammable manipulator, multifunctional, designed to move material, parts, tools or special 

devices in variable movements programmed to perform several tasks. Its feedback connections, between its sensors, 

actuators and environment, eliminate the necessity of human action to perform certain tasks, although there are robots 

partially controlled by humans. The automation level of a robot can reach the automated learning level, depending on the 

capacity of the computational algorithms to simulate the reality. 

An industrial robot is a programmable machine of generic application with some anthropomorphic characteristics: the 

main is a mechanical arm used to perform several industrial tasks such as: pick up, put down and move parts; the other 

human characteristics are the ability to respond to sensory stimuli, communicate with other machines and make decisions. 

These abilities allow a lot useful tasks to be performed by robots among which one can mention: spot welding, material 

transfer, loading machines, spray painting, assembly and disassembly of products, among other. Figure 1 presents a 

production system operated by robots. 

Figure 1: Production System (Reuters, 2013) 
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2.2 Robots programming 

In order to perform a useful activity, a robot must be programmed to execute its movement cycle. A robot program 

can be defined as a route to be followed by the manipulator, combined with peripheral actions that support the work cycle. 

Peripheral action examples are open and close the gripper, make logic decision and communicate with other devices.  

For robots with limited sequence, the programming considers limit switches and mechanical stopping for control the 

end points of the movement. A sequencer device regulates the sequence of movement, and this device determines the 

order in which each joint is actuated to form the complete movement cycle. 

Nowadays, almost all industrial robots are digital computers as controllers. For these robots, three programming 

methods can be distinguished (Groover, 2011): lead-through programming, programming language for robots similar to 

computers and off-line programming. 

Lead-through programming – the lead-through programming dates from early 1960s when the computer control 

was not prevalent. In the lead-through programming the task is taught to the robot moving the manipulator through the 

required movement cycle and simultaneously inserting the program in the controller memory for subsequent execution. 

Programming language for robots – the use of textual programming language has become a suitable programming 

method from the point where digital computers assumed control function in robotics. Its use has been stimulated by the 

increasing complexity of the tasks that robots perform, with the concomitant need to embed logical decisions in the work 

cycle of the robot. 

Simulation and off-line programming – the trouble with lead-through methods and textual programming techniques 

is to remove the robot from the production line to make the programming. The off-line programming allows the program 

to be prepared on a computer terminal, away from the robot, so that the program could be downloaded without stopping 

the production. In real off-line programming, there is no need to physically locate the positions in the workspace for the 

robot as required by textual programming languages. Some graphical simulation is required to validate the programs 

developed off-line, similar to off-line proceedings of the Computer Numerical Control (CNC). 

2.3 Automated Planning 

Planning is an explicitly deliberation process that chooses and organizes action by anticipating there expected 

outcomes. This deliberation is able at achieving as best as possible some pre-established objectives (Gahallab et al, 2009). 

This reasoning process aims to satisfy (through the implementation of actions), some previously established objectives. 

The automated planning is an artificial intelligence area that studies this deliberative process computationally (Vaquero; 

2007). 

The emergence of the automated planning dates back to the 1960s from scientific studies focused on creating general 

problem solvers (especially with the use of first-order logic), for example, GPS (General Problem Solver) (Ernst, Newell, 

1969). However, the first planner capable of using the representations of fields to obtain the solutions of the problems 

emerged in the early 70s, when a group of researchers at the Stanford Research Institute created an automated planning 

system called STRIPS (Stanford Research Institute Problem Solver) (Fikes, Nilsson, 1971). With simple formulation, this 

planner marked the beginning of the automated planning classical era, which lasted until the beginning of the 90’s.  

In order to compare the existing planners, was created the PDDL - Planning Domain Definition Language (Mcdermott 

et al, 1998). This language was used in the first competition of planners called International Planning Competition (IPC) 

which occurred during one of the leading conferences in the Automated Planning field, the Artificial Intelligence Planning 

Systems (AIPS - 1998). In this occasion, planners solved classical problems of planning as well as real simplified 

problems (Vaquero, 2007). 

By 1995, there were significant progress; however, the planners could not solve many problems, even if simple, in 

satisfactory computational time. Avrim Blum presented a planner that used an extracting plans method differentiated by 

the graphs. This new scheduler was called GRAPHPLAN (Blum and Furst, 1995). Its simplicity coupled with its superior 

performance to the planners encouraged the new planning techniques development and research, and marked the 

beginning of the neoclassical automated planning era. 

This growing area of Artificial Intelligence is present in scenarios such as path planning and handling of automated 

mobile; perception planning involving sensing actions to capture information from the environment, navigation planning 

that combines sensing and setting trajectories; planning manipulation and moving objects, e.g., parts assembly, among 

others (Ghallab et al, 2004).  

It is possible to think of a modern manufacturing process as chain of actions independently triggered and whose 

completion sensors can detect. Devices, numerical controlled machines, Automated Guided Vehicles (AGV), conveyor 

belts, manipulator robots, can perform these actions. Therefore, these actions consist of relatively complex programs on 

different languages, also including PLC’s programming languages. 

Until recently, applying automated planning in real systems were very remote, since the automated planning problems 

were solely treated with model problems, and extracted directly in formal specification languages such as PDDL. 

So the issue hereby referred can be seen as a translation activity from automated planners to devices and machines. 

Even though the perception and actuation processes can also be performed by controller, it is noted that this level of 
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language is not suitable to fit automated planners results. In the other hand, the modeling process is not feasible in a low-

level language as Ladder, even though in the end, it is desired to have a way to automatically actuate over the input of 

those actions when using PLC and detect the termination condition of these actions with sensors perceptions (Tavares et 

al., 2011). Thereby, it is necessary to develop ways to integrate automated planning solutions with robots controllers 

using the robot programming language. 

2.4 The itSIMPLE System 

The itSIMPLE (Integrated Tools Software Interface for Modeling Planning Environments) was designed to support 

users during the construction of real and complex planning domain applications since the initial stages of the design life 

cycle (Vaquero et al., 2009). These initial stages encompass domain specification, modeling, analysis, planner selection, 

model testing and maintenance, all of them crucial for the success of the application. 

The itSIMPLE Project aims to study and develop a Knowledge Engineering tool for designing Artificial Intelligence 

Planning and Scheduling domain models. The software provides a different approach for modeling the planning domain. 

Its main feature is to enable the entire modeling process to be done through UML diagrams (Unified Definition Language) 

(Object Management Group, 2003). As the group of the PDDL language experts, and its formalisms, is very limited, 

itSIMPLE opened the door for a larger group of people to be able to model the planning domain from a graphical language. 

Hence, the software consists of a tool capable of translating the UML model to a corresponding PDDL that can be used 

by automated planners.  

The evolutions of the itSIMPLE present an enhanced integrated environment with well-known representation 

languages such as UML, XML, Petri Nets and PDDL (Planning Domain Definition Language), as shown in Figure 2, 

each one of them with its best contribution to the whole design process, leading designers from the informality of real 

world requirements to formal domain models. The tool can automatically translate UML models to a PDDL representation 

in order to let users test their models with several general planners (such as Metric-FF, FF, SGPlan, MIPS-xxl, LPG-td, 

LPG, hspsp, SATPlan, Plan-A, blackbox, LPRPG, Marvin). XML is suitably used as an intermediate language that can 

support the translation from UML to other representations such as PDDL or Petri Nets. itSIMPLE focuses also on the use 

of Petri Nets for dynamic domain analysis since it is a formalism with great potential for model checking and simulation. 

The itSIMPLE software is an open source project implemented in Java that provides a user-friendly GUI to model 

and analyzes many planning domains at the same time. This fact usually contributes to domain model reusability and 

maintenance.  

Figure 2: itSIMPLE’s structure and languages (Vaquero et al., 2009) 

2.5 Planning in robotics 

Currently, there has been a discussion on the use of automated planning in robotics. For example, most of the one 

million robots deployed today in the manufacturing industry do not perform planning per se. Using a robot without 

planning capabilities basically requires hand-coding the environment model and the robot’s skills and strategies into a 

reactive controller (Ghallab et al., 2004). This type of programming is normally fixed and represents little or none 

flexibility with regard to other movements; thus requiring reprogramming of the equipment. This results in high labor 

costs since only specialize staff can perform the programming, in addition to production losses due to setup time to robot 

training. 

However, if a robot has to face a diversity of tasks and/or a variety of environments, then planning is going to assist 

the robot programming, and it will increase the robot’s usefulness and robustness. When planning is integrated within a 

robot, it usually takes several forms and is implemented throughout different systems. Among these various robot 
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planning forms, there is some in particular: path and motion planning, perception planning, navigation planning, 

manipulation planning and domain-independent planning. 

Nowadays, the maturity of robot planning is mainly at the level of its domain-specific planners. Path and motion 

planning is a mature area that relies on computational geometry and efficiently it uses probabilistic algorithms, which 

enable manual programming of closed-loop controllers for these tasks that handle the uncertainty and the integration 

between acting and sensing (Ghallab et al., 2004). These high-level reactive controllers permit pre-programmed, goal-

directed and event-reactive modalities. 

A perfect example of a robot that utilizes advanced automated planning is the Curiosity, shown in Figure 3. Curiosity 

is a Mars Explorer Rover (MER) - it is a car-size robot designed by NASA and developed to explore the Mar’s surface. 

Using 17 cameras, scientists are able to choose the most suitable path to be covered. The robot also possesses an arm 

equipped with a drill, a brush to remove dust and a shovel to collect materials for analyses. In addition, in the Curiosity 

body are located computers that use planners to define the robot actions. 

Figure 3: Curiosity robot picture © NASA 

3. CASE STUDY

The problem approached in this work is a simple production system. It consists of two conveyor belts (input and 

output ones), a site where assembly is performed and a buffer to store parts if necessary. There are two types of parts 

(base and cover) and the robot must perform both the transport and the assembly of these components. Figure 4 illustrates 

this system. 

Figure 4: Robotic System 

In this problem, the robot must be programmed and trained in order to perform different tasks (grab, move and drop), 

always analyzing the presence and the type of the part. 

Follow, two different robot programming methods for this system will be presented. The first method is about the 

classical programming that is developed in the robot controller and the robot is trained to realize the set of tasks. The 
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second method uses automated planning, in which the system is modeled and the evaluation of the conditions generates 

the plans (task set) that the robot must realize. 

3.1 Classical robot programming method 

In the classical robot programming method, firstly the trajectories and actions to be performed are defined. After, this 

implementation in the robot controller begins with the definition of the kind of movement, speed and precision level. 

Later, the robot is trained to carry through these movements in definitive fixed sequence. 

For the case study, the robot will need to develop the following actions: 

• FMove(Initial_position,Conveyor Belt)

• OMove(Conveyor Belt,Buffer)

• FMove(Buffer, Conveyor Belt)

• OMove(Conveyor Belt, Assembling)

• FMove(Assembling, Conveyor Belt)

• OMove(Buffer, Assembling)

• FMove(Assembling,Buffer)

• OMove(Assembling, Output)

• FMove(Output, Initial_position)

• FMove(Output, Conveyor Belt)

• GrabPart(Close Gripper)

• DropPart(Open Gripper)

• PartAssembly (Open Gripper)

• GrabProd(Close Gripper)

• DropProd(Open Gripper)

The command FMove is a free movement (robot without any part) and OMove is a robot movement with the part. The 

other actions are of Grab or Drop the part (or product) and PartAssembly carry through the assembling. 

The main characteristics of the movements are: 

• OMove - low speed, because the robot is handling the part

• FMove - high speed, because the robot is moving freely.

• In approach points the speed must be low

• Position Level (movement precision level) will be higher when the actions will be executed to catch and to drop

The conditions (part presence and type) are given through the read values in the sensors and will be parameters to 

determine a certain command execution. 

The previously modeled system was mounted using a robot MOTOMAN-HP6 for accomplishment of the 

programming, training and tests. Figure 5 presents a picture of the assembly system. 

Figure 5: Picture of the assembly system. 

The tasks are divided into Jobs, which are programs with the movements and actions necessary to accomplish the 

transport of part / product and the assembly of the product. 
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The Jobs required for this case study are: 

Job1: MOVL, Initial_position,Conveyor Belt 

Close Gripper  

Job2: MOVL , Conveyor Belt,Buffer 

Open Gripper 

Job3: MOVL, Conveyor Belt, Assembling 

Open Gripper 

Job4: MOVL, Buffer, Conveyor Belt 

Close Gripper  

Job5: MOVL, Assembling, Conveyor Belt 

Close Gripper  

Job6: MOVL, Assembling,Buffer 

Close Gripper  

Job7: MOVL, Buffer, Assembling 

Open Gripper 

Job8: Close Gripper (GrabProd)  

MOVL, Assembling, Output 

Open Gripper (DropProd) 

Job9: MOVL, Output, Initial_position 

Job10: MOVL, Output, Conveyor Belt 

Close Gripper 

Job11: MOVL, Conveyor Belt, Assembling 

Open Gripper (PartAssembly) 

Job12: MOVL, Buffer, Assembling 

Open Gripper (PartAssembly) 

These jobs were tested in the NX 100 controller (the MOTOMAN HP-6 controller). Figure 6 illustrates part of the 

Job’s programming using the NX 100 controller. 

Figure 6: Job’s programming example. 

In Figure 6, each number on the left represents an address line where an action is scheduled. The robot moves using 

the command MOVL (linear motion), speed of 60 cm / min (low speed to load one part) or 80 cm / min (free movement) 

and PL (precision level) equal to zero (error less than 12.5 μm). 

MOVL is a linear movement, which the robot movement itself in rectilinear trajectories in the cartesian axes (x, y, z). 

In long movements, it is necessary to establish intermediate points to prevent that the robot exceeds the workspace. 

After the robot training, is created the main programs that are a set of Jobs or sequence of action for a simple assembly 

system with two kinds of part. Two systems are evaluated: with buffer and without buffer. Figure 7 shows the Grafcet 

diagram from this case study without buffer, and Figure 8 presents the Grafcet diagram for this system with a buffer. 

ABCM Symposium Series in Mechatronics - Vol. 6 
Copyright © 2014 by ABCM

Part I - International Congress 
Section IV - Robotics

594



Figure 7: Grafcet of system without buffer Figure 8: Grafcet of system with buffer 

In the simplest system (without buffer) only four actions are carried through. The robot moves itself of the initial 

position for the conveyor belt, catches the part, takes the part for the assembly and later returns for the conveyor belt and 

it repeats the process with other part. When it arrives again in the assembly, the robot accomplishes the product 

assembling. For the product assembly the type of part condition must be respected. After the assembly, the product is 

carried to the output. In this case, the part sequence must be pre-determined, restricting the input parts flexibility – in 

other words, it is necessary that the base is provided before the cover, ensuring the product assembly. 

With buffer, it is necessary more analyses and actions. Depending on the kind of part, the robot must store it in the 

buffer and take for the assembly only when its corresponding type arrives. For this reason, parts can arrive in any sequence 

and the buffer is going to be used to reach a suitable assembly sequence. 

3.2  Robot Programming method with Automated Planning 

Another approach is using of automated planning to define the sequence of jobs that the robot must to execute. The 

system must be modeled and well specified (with the objective and conditions definitions) for the development of the 

plans, aiming at to reach the objective that, in this in case is the mounted product in the output.  

The modeling process begins with the Use Cases Diagram, as shown in Figure 9. An analysis of the proposed problem 

characteristics allows the identification of three actors, the Robot, the Part and the Product. The actor Robot will be 

responsible for carrying out the Use Case Grab and Drop, the actor Part will be transported for Robot while the actor 

Product will be compose for two parts on the assembling place. 

The Use Case FreeMove, OccupiedMove, Grab and Drop requires the activities of both Robot and Part actors 

simultaneously while the Use Case PartAssembly, ProdGrab and ProdDrop requires the activities of both Robot and 

Product actors.  
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Figure 9: Assembly Line Use Case Diagram 

Through this diagram, it can be visualized the robot actions: move (free and occupied ones), assembly a part, grab or 

drop (part or product). Finally, it can also be observed the part that will compose the product. 

After the definition of actors and actions, a Class Diagram (Figure 10) can be developed showing the functions 

performed by the robot, the part class, the product class, the local class, the assembly class, the buffer class and the 

relations between them. 

Figure 10: Robotic System Class Diagram 

It can be observed from the diagram above that the robot performs seven actions: FMove (free movement, carrying 

no parts, a higher speed can be used), OMove (occupied movement, a lower speed must be used), Grab, Drop, ProdGrab, 

ProdDrop (the position will be different for the product) and PartAssembly .  

State diagrams of the parts and the robot class are built in order to relate the actors and identify their different states. 

Figure 11 shows the Part’s state diagram, and Figure 12 shows the Robot’s state diagram. In Figure 11, the part can be in 
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two different states, Still or Moving. The robot actions Grab or Drop the part and the conditions evaluation (p1.inLocal 

or p1.inRobot) can determinate the change of states. In Figure 12 are shown the actions (Drop, prodDrop, Grab, 

prodGrab, Fmove, Omove and PartAssembly) and conditions (r1.available = true or false) for the change of robot states 

(Free or Occupied). 

The product’s state diagram is similar to the part’s state diagram. 

Figure 11: Part´s State Diagram 

Figure 12: Robot´s State Diagram 

The pre and post-conditions of actions that the objects of Robot Class performs are extracted from descriptions of Use 

Cases and these are represented in OCL - Object Constraint Language (OMG – Object Management Group, 2003). The 

example below shows a condition in the robot’s state diagram. 

p1.inLocal = l1 and p1.inRobo = null 

Its means that Part is in one Local and not in the Robot. 

3.3 Problem Definition 

Once the planning domain was modeled, the planning problem can be modeled by two distinct Snapshots (Objects 

Diagram) representing the initial state and goal state of the problem. For didactic reasons, this paper is presenting only 

two Parts (p1 and p2) to be assembled as product and does not requires the buffer. Initially, the Robot is set in Initial 

Position; two parts is on conveyor belt (input). The final state, defined as a goal snapshot is: two parts compose a Product 

and this in the output; Figure 13 and Figure 14 shows the initial snapshot and the goal snapshot corresponding to this 

problem. 
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Figure 13: Initial Snapshot  

Figure 14: Goal Snapshot  

The itSIMPLE has a significant number of automated planners, such as SGPlan6 (Hsu and Wah, 2008), Metric-FF 

(Hoffmann, 2003). This work presents the result obtained with the Metric-FF planner, which generated the plan-solutions 

described below. 

1- (FMove, Robot, IniPos, Conveyor Belt)  

2- (Grab, Robot P1, Conveyor Belt) 

3- (OMove, Robot P1, Conveyor Belt, Assembling) 

4- (Drop, Robot P1, Assembling) 

5- (FMove, Robot, Assembling, Conveyor Belt) 

6- (Grab, Robot P2, Conveyor Belt) 

7- (OMove, Robot P2, Conveyor Belt, Assembling) 

8- (Drop, Robot P2, Assembling) 

9- (PartAssembly P2 P1, Assembling, Product) 

10- (ProdGrab, Robot, Prod, Assembling) 

11- (OMove, Robot P2, Assembling, Output) 

12- (ProdDrop, Robot, Product, Output) 

It can be seen that twelve steps are necessary to solve the problem. The robot moves from its initial position, grabs 

one part from the conveyor and transports it to the assembling area. After that, it collects another part on the conveyor 

and moves it to assembly. Finally, the robot assembles the two parts, grabs the product and carries it to the output conveyor 

belt.  
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The generated plan steps present one direct relationship with the previously defined Jobs on classical robot 

programming method. This relationship is shown hereafter: 

• Job1: steps 1 and 2

• Job3: steps 3 and 4

• Job5: steps 5 and 6

• Job11: steps 7,8 and 9

• Job8: steps 10 e 11 and 12

Therefore, to execute this plan on classical method would be necessary only a sequence of five jobs. 

4. CONCLUSION

This paper describes how to realize classical programming and apply automated planning tools in assembly and 

disassembly Robot system. With itSIMPLE it is possible to generate several initial and goal Snapshots related to real 

cases; that is, solving several different problems without re-programming. Each generated solution-plan action must be 

mapped as Robot Language. On the other hand, it is not possible to generate a cyclic and recursive solution; each problem 

requires another initial snapshot and a new solution-plan must be created, which requires time processing. 

The best scenario for the automated planning application in manufacturing automation would be the integration of 

disparate languages, in this case, PDDL and Robot Language. 

The integration of these two boarding, would promote the insertion of an intelligent behavior on the diverse types of 

industrial systems with robot use, such as the automotive industry, oil industry, mining and others, beyond advantages as 

adaptability, reduction of uncertainties and forecast of behavior. 

This integration would be possible by developing an application capable of performing an interface between Robot 

and itSIMPLE. The development of an application for the automatic integration between the planner allocated in 

itSIMPLE and the process controller from PDDL to Jobs (actions of robot) is a main further work. This interface will 

communicate them through DLL, OPC server or a built driver. The idea of this interface is better described in Fonseca et 

al (2013). 

Figure 15: Runtime processes 

In Figure 15, it can be observed an interface between the plan domain (using the itSIMPLE) and the robot. Having 

defined the list of actions, the system begins to operate until the goal snapshot or an unexpected state is reached. The 

interface will convert a PDDL plan into a set of actions using the robot language (Jobs). In the case of an unexpected 

state, the system will request a re-planning for an automated planner. 

The automated planning presents more flexibility and simple efficiency for solutions in a specific domain, and 

modifications can be made offline not causing robot stop. In classical modeling system a small modification of parameters 

such as addition of part types becomes the program more complex and dependent on the programmer. 
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This is an only initial study which intends to stimulate automated planning deployment. There is a need to compare 

planner solutions in more complex examples and to compare it with the results obtained by using traditional programming. 
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