ANALYTICAL EQUATION FOR MOTION CONSTRAINTS IN CONFINED ENvironments FOR A $P6R$ REDUNDANT ROBOT

Henrique Simas
Altamir Dias
Daniel Martins
Department of Mechanical Engineering - Federal University of Santa Catarina
henrique.simas@ufsc.br, altamir.dias@ufsc.br, daniel.martins@ufsc.br

Edson Roberto De Pieri
Department of Automation and Systems Engineering - Federal University of Santa Catarina
edson.pieri@ufsc.br

Abstract. Redundant robots have additional mobilities that allows applications beyond the conventional robot. The additional mobilities of robots enable to include extras tasks, depending on the degree of redundancy. Several references present techniques and methodologies to solve the kinematic redundancy to robots with open or closed kinematics chains. In the cases of operation of robots in confined environments, the classical methods like Denavit-Hartenberg, for example, makes more difficult the precise analysis of the limits and constraints of robot’s joints movements. Recent works have shown that the use of screw theory, and its tools, turn the robots analysis easier, even for complex differential and kinematic model, when compared with the classical methods. The screw theory allows to introduce new solutions on study of singularity and motion constraint in confined environments. Again, researches have also shown ways to evaluate the movement constraints derived from a differential model of redundant robots, based on analytical expressions. These studies are limited to computational experiments in a planar redundant robot model. This paper presents theoretical aspects of the differential model and the mathematical strategies to obtain the expression of the constrained movement for a $P6R$ redundant robot operating in confined environments including the avoiding collision as a secondary task. It is presented theoretical issues and the development of the position and differential kinematics model, based on screw theory. As result, it is explored the mathematical model to identify the $P6R$ singular postures including the influences of the collision avoidance task.

Keywords: Redundant robots, kinematic constraints, collision avoidance, screw theory, analytical singularities

1. INTRODUCTION

Robotic operations in confined environments imply in the imminent possibility of collision of the robot with some part of its workspace. The avoidance and treatment of collision possibilities present themselves as an additional restriction to be planned resulting in a secondary task, since the primary task, the robot will perform with its end-effector. The collision avoidance, as secondary task in robotic systems, requires additional movements of the robot, beyond those required for performing the primary task, to reposition its kinematic chain away from to the collision points in the environment around the task. In this sense, the robot must have some degree of redundancy.

The robot redundancy r is computed by the difference between robot DOF, in other words, the number of joints n, and the DOF necessary to perform the task m, expressed by: $r = n - m$ (Siciliano et al., 2009). The degree of redundancy determines the number of constraints, or the DOF, for a second task.

The use of the redundancy suggests new solutions for direct and inverse kinematics, since traditional methods may turn difficult to get adequate results (Chang, 1996)(Piaggio, 1999)(Muller, 2004)(Soucy and Payeur, 2005). The main methods are based on nullspace of the Jacobian matrix, like Pseudoinverse (Siciliano et al., 2009) and task priority (Chiaverini, 1997)(Antonelli and Chiaverini, 1998). Recent works presented new methods for solution of redundancy based on screw theory.

The screw theory is based that any spatial movement can be represented as a combination of a linear movement with a rotational movement (Hunt, 2000). From the screw theory, several tools and mathematical methods have been developed for modelling the kinematic of mechanisms and robots. Highlighting among these tools, the Davies’ method (Davies, 1981) and Assur virtual chains (Simas et al., 2009), have been extensively used lately in several studies (Campos et al., 2009) (Nokleby and Podhorodeski, 2001) (Dai and Jones, 2001)(Simas et al., 2011), and among these, are taken as the basis for developing the solution for collision avoidance of a redundant robot operating tasks in confined environment (Simas et al., 2004)(Simas et al., 2009).

The potential of application of the screw theory in differential kinematic modeling and solution for redundant robots has been studied by Campos (Campos et al., 2009) and Simas (Simas et al., 2009) and specifically for analysis of kinematic singularities for a planar redundant robots by Simas (Simas et al., 2011). The paper goal is to present an advanced
study of singularities for spatial redundant robots operating in confined environment and subjected to kinematic constraints imposed derived from virtual kinematic chains, used to task of collision avoidance. The study results allows to write mathematical formulas for the evaluation of kinematic singularity considering the restriction and limitation of movement in terms of the secondary task, or the collision avoidance task. It avoided with this result, work and control with algorithmic singularities, quite common in other methods previously presented in the literature (Chiaverini, 1997) (Muller, 2004)(Soucy and Payeur, 2005).

Firstly, it is presented the theoretical aspects of the screw theory and their respective methods and mathematical tools used in the study developed. Following the kinematic model is developed for a P6R redundant robot, operating in an environment delimited by a plane, where an Assur virtual chain is used to perform the collision avoidance. Finally, are used in the study developed. Following the kinematic model is developed for a (Muller, 2004)(Soucy and Payeur, 2005).

2. TOOLS FROM SCREW THEORY

The approach, here proposed in this paper is based on the Davies’ method, Assur virtual chains, direct graph notation and extended Jacobian from kinematic restrictions, where the screw displacement are successively applied. Those topics are extensively explored in literature and briefly presented in following sections.

2.1 The description of movements through Screws

The general spatial differential movement of a rigid body consists of a differential rotation about an axis, and a differential translation along the same axis named the instantaneous screw axis. The complete movement of the rigid body, can be described as a combining rotation (\(\theta \) displacement) and translation (\(t \) displacement) called screw movement or twist, here denoted by \(\hat{s} \). The ratio of the linear velocity to the angular velocity is called pitch of the screw denoted as \(h \) (Tsai, 1999).

The twist may be expressed by a pair of vectors \(\hat{s} = [\omega^T; V_p]^T \), where \(\omega \) represents the angular velocity of the body with respect to the inertial frame (reference frame or link \(r \)) and \(V_p \) represents the linear velocity of a point \(P \) attached to the body which is instantaneously coincident with the origin \(O \) of the reference frame.

So, a twist may be decomposed into its magnitude and its corresponding normalized vector. The twist magnitude \(\hat{q} \) is either the magnitude of the angular velocity of the body, \(||\omega|| \), if the kinematic pair is rotative (\(h = 0 \)) or helical, or the magnitude of the linear velocity, \(||V_p|| \), if the kinematic pair is prismatic (\(h \to \infty \)) (Hunt, 2000). The normalized screw \(\hat{s} \) is a twist of unitary magnitude, i.e.

\[
\hat{s} = \hat{q}q
\]

The normalized screw coordinates \(\hat{s} \) is written as:

\[
\hat{s} = \begin{bmatrix} s_i \\ s_{oi} \times s_i \end{bmatrix} \text{ for rotative pairs and } \hat{s} = \begin{bmatrix} 0 \\ s_i \end{bmatrix} \text{ for prismatic pairs (Tsai, 1999),}
\]

where \(s_i = [s_x, s_y, s_z] \) denotes an unit vector along the direction of the screw axis, and vector \(s_{oi} \) represents the position vector of a point lying on the screw axis.

Thus, the twist in Eq.(2) expresses the general spatial differential movement (velocity) of a rigid body relative to an inertial reference frame \(O - XYZ \).

If the kinematic pair is rotative, \(s_i \) points in the direction of rotative axis, and, if the kinematic pair is prismatic, \(s_i \) points in the direction of kinematic pair displacement. It is important to note that \(s_i^T s_{oi} = 0 \), ie, they are perpendicular (Tsai, 1999) (Hunt, 2000). Figures 1 and 2 depict the location of vector \(s_i \) and \(s_{oi} \) for a rotative and a prismatic kinematic pair respectively .

The twist can also represent the movement between two adjacent links of a kinematic chain, the successive screw displacement (Tsai, 1999). In this case, \(s_i \) and \(s_{oi} \) represents the movement of link \(i \) relative to link \((i - 1) \) (see Fig. 1 and Fig. 2) and a homogeneous transformation is obtained (Tsai, 1999), as Eq.(3).

\[
A_i = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} s_x & s_y & s_z - s_{oi}(a_{11} - 1) - s_{oy}a_{12} - s_{oz}a_{13} \\ s_x & s_y & s_z - s_{oi}(a_{22} - 1) - s_{oz}a_{23} \\ s_x & s_y & s_z - s_{oi}(a_{33} - 1) \end{bmatrix}
\]

where:

\[
\begin{align*}
a_{11} &= (s_x^2 - 1)(1 - c_{9a}) + 1 \\
a_{12} &= s_x s_y (1 - c_{9a}) - s_z s_{9a} \\
a_{13} &= s_x s_z (1 - c_{9a}) + s_y s_{9a} \\
a_{21} &= s_y s_x (1 - c_{9b}) - s_z s_{9b} \\
a_{22} &= (s_y^2 - 1)(1 - c_{9b}) + 1 \\
a_{23} &= s_y s_z (1 - c_{9b}) - s_x s_{9b} \\
a_{31} &= s_z s_x (1 - c_{9c}) - s_y s_{9c} \\
a_{32} &= s_z s_y (1 - c_{9c}) + s_x s_{9c} \\
a_{33} &= (s_z^2 - 1)(1 - c_{9c}) + 1.
\end{align*}
\]
The vector \(s_i \) and \(s_{oi} \) are function of \(\theta_i \) (for rotative kinematic pair) and \(t_i \) (for prismatic kinematic pair) associated with the \(i \) kinematic pair. Then the \(s_i \) and \(s_{oi} \) are computed by the relation presented on Eq.(5) and Eq.(6).

\[
s'_i = R'_r s_i
\]

where, \(s'_i \) is the vector \(s_i \) as function of the kinematic displacements between the link \(i \) and the reference link \(r \), \(s_i \) is the coordinates of the vetor \(s_i \) in the initial kinematic posture and \(R'_r \), extracted from homogeneous transformation on Eq.(3), is the rotation matrix of the projections of the axis of the frame of the link \(i \) on the coordinates of the reference frame, on the link \(r \).

\[
\begin{bmatrix}
 s'_r \\
 \vdots \\
 1
\end{bmatrix}
= A'_r
\begin{bmatrix}
 s_{oi} \\
 \vdots \\
 1
\end{bmatrix}
\]

where, \(s'_{oi} \) is the vector \(s_{oi} \) as function of the kinematic displacements between the link \(i \) and the reference link \(r \); \(s_{oi} \) is the coordinates of the vetor \(s_{oi} \) in the initial kinematic posture and \(A'_r \) is the homogeneuos transformation matrix between the frame of the link \(i \) on the coordinates of the reference frame, on the link \(r \) computed using Eq.(3).

The choice of a link as reference (link \(r \)) aims to simplify the final expressions for the screw representations. In general, it is necessary to transform the coordinates of a screw represented in the link \(r \) to a new reference on link \(j \). In this case, it used the coordinate screw transformation matrix \(T^j_r \) that has its structure presented in Eq.(7) (Tsai, 1999)

\[
T^j_r = \begin{bmatrix}
 R^j_r \\
 W^j_r \\
 0_{3 \times 3}
\end{bmatrix}
\]

where \(R^j_r \) is the rotation matrix of the reference frame on link \(r \) in relation to the frame on link \(j \); \(W^j_r \) is a \(3 \times 3 \) skew-symmetric matrix representing the vector from the origin \(O_j \) of the frame \(j \) to the origin \(O_r \), on frame \(r \), expressed in the \(j \)th frame.

More details of the screw theory and its applications can be found in works composed chronologically of Davies (1981), Tsai (1999) and Hunt (2000).

2.2 Davies method

Davies method is a systematic way to relate the joint velocities in closed kinematic chains. Davies derived a solution to the differential kinematics of closed kinematic chains from Kirchhoff circulation law for electrical circuits. The resulting Kirchhoff-Davies circulation law states that “The algebraic sum of relative velocities of kinematic pairs along any closed kinematic chain is zero” (Campos et al., 2009). This method is used to obtain the relationship between the velocities of a closed kinematic chain. Since the velocity of a link with respect to itself is null, the circulation law can be expressed as:

\[
\sum_{0}^{n} \hat{\mathbf{s}}_i \dot{\mathbf{q}}_i = 0
\]

where \(\hat{\mathbf{s}}_i \) (expressed on the coordinates of the frame reference link \(r \)), \(\dot{\mathbf{q}}_i \) represents respectively the normalized screw and the magnitude of twist \(\mathbf{s}_i \) and \(n \) is the number of joints.
Equation (8) is the constraint equation which, in general can be written as

\[N \dot{q} = 0 \]

(9)

where \(N = [\hat{s}_1 \hat{s}_2 \cdots \hat{s}_n] \) is the network matrix containing the normalized screws, with the signs of the screws depend on the definition of the circuit orientation (as will be presented later) (Campos et al., 2009), and \(\dot{q} = [\dot{q}_1 \dot{q}_2 \cdots \dot{q}_n] \) is the magnitude vector of the velocities of each joint.

A closed kinematic chain has actuated joints, here assigned as primary joints, and passive joints, assigned as secondary joints. The constraint equation, Eq.(9), allows the computation of the secondary joint velocities as functions of the primary joint velocities. To achieve this, the constraint equation is rearranged highlighting the primary and secondary joint velocities and Eq.(9) is rewritten as follows:

\[
\begin{bmatrix}
N_p & \vdots & N_s
\end{bmatrix}
\begin{bmatrix}
\dot{q}_p \\
\vdots \\
\dot{q}_s
\end{bmatrix}
= 0
\]

(10)

where \(N_p \) and \(N_s \) are the primary and secondary network matrices, respectively, and \(\dot{q}_p \) and \(\dot{q}_s \) are the corresponding primary and secondary magnitude vectors, respectively.

So, Eq.(10) can be rewritten as

\[N_p \dot{q}_p + N_s \dot{q}_s = 0 \]

(11)

The secondary joint velocities can be computed by Eq.(12) as follows:

\[\dot{q}_s = -N_s^{-1} N_p \dot{q}_p \]

(12)

The secondary joint position can be computed by numerical method, as a screw-based integration method proposed by (Simas et al., 2009)

2.3 Assur virtual chains

The concept of Assur virtual kinematic chain, or just virtual chain, is essentially a tool to get information on the movement of a kinematic chain or to impose movements on a kinematic chain (Campos et al., 2009).

This concept was first introduced by (Campos et al., 2009), which defines the virtual chain as a kinematic chain composed of links (virtual links) and joints (virtual joints) which possesses three properties: a) the virtual chain is open; b) it has joints whose normalized screws are linearly independent; c) it does not change the mobility of the real kinematic chain.

From the third property, the virtual chain proposed by (Campos et al., 2009) is in fact an Assur group, i.e. a kinematic subchain with null mobility such that, when connected to another kinematic chain preserves its mobility (Campos et al., 2009).

2.4 Direct graph notation

Consider a kinematic pair composed of two links \(E_i \) and \(E_{i+1} \). This kinematic pair has its relative velocity defined by a screw \(R\hat{s}_j \) (joint \(j \)) relative to a reference frame \(R \). Joint \(j \) represents the relative movement of the link \(E_i \) with respect to the link \(E_{i+1} \). This relation can be represented by a graph (Campos et al., 2009), where the vertices represent links and the arcs represent joints.

Now, studying a simple graph, where joint \(j \) is part of two closed chains. For each closed chain the circuit direction is chosen (Campos et al., 2009). In a direct mechanism graph, if the joint has the same direction as the circuit, the twist associated with the joint has a positive sign in the circuit equation (constraint equation on Eq.(8)), and a negative sign if the joint has the opposite direction to the circuit.

2.5 Extended Jacobian from kinematic constraints

The method of extended Jacobian proposes a solution to solve the redundancy of robots creating kinematic constraints in differential space. These constraints when added to the Jacobian matrix, produce a non-redundant kinematic system and making the Jacobian matrix invertible.

A method to compute additional constraints has been proposed by Simas et al. (2011) based on reciprocal screws (Dai and Jones, 2001)(Nokleby and Podhorodeski, 2001). The extended Jacobian based on reciprocal screws arises from the fact that \(N_s \) matrix, must be inverted as can be seen on Eq (12), contains screws from virtual kinematic pairs. So, to simplify the inversion of the matrix \(N_s \), it is necessary to eliminate its screws of the virtual chains.
The elimination of secondary virtual screws can be performed through reciprocal screws. The reciprocal screws are arranged in a matrix defined as annihilating matrix (Campos et al., 2009).

To eliminate these screws (columns) from secondary matrix (Eq.(11)), another partition is performed, as follows in Eq.(13).

\[N_s \dot{q}_s = N_{sa} \dot{q}_{sa} + N_{sp} \dot{q}_{sp} \]

where \(N_{sa} \) corresponds to the screws of the joints of interest (here called active) and \(N_{sp} \) corresponds to the screws of the joints which there is no interest (here called passive).

The passive joints are eliminated using an annihilate matrix \(K \) which has the following structure on Eq.(14) (Campos et al., 2009).

\[K = [I_{m \times m} | 0_{m \times (n-m)}] \]

\[^{ref}W_{N_{sp}} = (n-m) \times d \]

where \(^{ref}W_{N_{sp}} \), whose dimension is \((n-m) \times d\), is a set of reciprocal screws from secondary passive matrix \(N_{sp} \).

The reciprocal screws represent a set of external forces and torques that do not generate movements on secondary passive joints. Therefore pre-multiplying \(N_{sp} \) by \(K \), produces:

\[K N_{sp} = 0 \]

To maintain equality, it is necessary that the Eq.(11) is rewritten, considering the Eq.(13), as follows in Eq.(16).

\[K N_p \dot{q}_p + K N_{sa} \dot{q}_{sa} + K N_{sp} \dot{q}_{sp} = 0 \]

Using equality in Eq.(15) the following result is obtained in Eq.(17).

\[K N_p \dot{q}_p + K N_{sa} \dot{q}_{sa} = 0 \]

The velocities of the secondary joints are then obtained by Eq.(18).

\[\dot{q}_{sa} = -(K N_{sa})^{-1} K N_p \dot{q}_p \]

So using the usual definition of the Jacobian, the following result is obtained in Eq.(19).

\[J = -(K N_p)^{-1} K N_{sa} \]

The Jacobian expressed by the Eq.(19) is a desired extended Jacobian matrix (Simas et al., 2011) (Campos et al., 2009).

In order to evaluate the singularities postures on the whole kinematic chain, including real and virtual kinematic pairs on extended Jacobian, it is necessary to compute the determinant of \(K N_{sa} \). The next step is to invert the Jacobian matrix as shown in Eq.(18) with objective to compute the velocities on secondary kinematic pairs \((\dot{q}_{sa}) \), and its respectively position.

3. MODELING OF A P6R REDUNDANT ROBOT OPERATING IN A CONFINED ENVIRONMENT

This section presents the P6R model, including the virtual chains to generate the trajectories, as primary task, and to the collision avoidance, considered as secondary task. The resultant extended Jacobian is used to obtain an analytical formula that expresses mathematically, and allows the control of the postures, that the P6R robot assumes their singular conditions, together with the collision avoidance strategy.

Figure 3 depicts the P6R redundant robot including a collision plane inside its workspace.

The P6R robot presented in Fig. 3 is composed of seven joints, where the first joint is a prismatic with displacement \(L_1 \), and the next six rotative joints, with displacements \(\theta_2, \theta_3, \theta_4, \theta_5, \theta_6 \) and \(\theta_7 \), respectively described through screws \(\$i \) (for \(i = 1, \ldots, 7 \)) pointing its directions. The robot has three links, enumerated by 2, with length \(a_2 \), 3, with length \(a_3 \) and 4, with length \(a_4 \) and \(d_4 \), and has its end-effector attached in a spherical wrist (screws \(\$5, \$6 \) and \(\$7 \)). The collision
The transformation matrix necessary to represent the velocities of the end-effector on the reference frame (P₆₅ coordinates of the frame of the link 4) can be obtained as:

\[J \] obtained as:

Computing the screws for P₆₅ using Eq.(6) and the initial posture from Tab. 1, the matrix of normalized screws are obtained as:

\[J_{P₆₅} = \begin{bmatrix} 0 & -s_{3₄} & 0 & 0 & 1 & 0 & c₆ \\ 0 & -c₃₄ & 0 & 0 & 0 & -s₅ & c₅s₆ \\ 0 & 0 & 1 & 1 & 0 & c₅ & s₅s₆ \\ -s₃₄ & d₄c₃₄ & a₃s₄ & 0 & 0 & 0 & 0 \\ -c₃₄ & -d₄s₃₄ & a₄ + a₃c₄ & a₄ & 0 & 0 & 0 \\ 0 & a₂ + a₃c₃ + a₄c₃₄ & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \] (20)

where \(J_{P₆₅} \) is the matrix of the normalized screw described in function of the joint displacements and referenced on coordinates of the frame of the link 4, the reference frame, \(s₃ = sin(θ₃), c₃ = cos(θ₃), s₄ = sin(θ₄), c₄ = cos(θ₄), s₅ = sin(θ₅), c₅ = cos(θ₅), s₆ = sin(θ₆), c₆ = cos(θ₆), s₃₄ = sin(θ₃ + θ₄) and c₃₄ = cos(θ₃ + θ₄). \)

The model has as inertial reference the P₆₅ base or the frame \(O₀ - x₀₀₀₀₀₀ \) (see Fig. 3), so the respective screw transformation matrix necessary to represent the velocities of the end-effector on the reference frame (P₆₅ base) is given.

Table 1. Coordinates of \(s_i \) and \(s_{oi} \) for P₆₅ robot

<table>
<thead>
<tr>
<th>Joint i</th>
<th>(s_i)</th>
<th>(s_{oi})</th>
<th>(θ_i)</th>
<th>(t_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0, -1, 0</td>
<td>-(a₂ + a₃ + a₄), 0, d₄</td>
<td>0</td>
<td>θ₁</td>
</tr>
<tr>
<td>2</td>
<td>0, -1, 0</td>
<td>-(a₂ + a₃ + a₄), 0, d₄</td>
<td>θ₂</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0, 0, 1</td>
<td>-(a₃ + a₄), 0, d₄</td>
<td>θ₃</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0, 0, 1</td>
<td>-a₄, 0, d₄</td>
<td>θ₄</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1, 0, 0</td>
<td>0, 0, 0</td>
<td>θ₅</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0, 0, 1</td>
<td>0, 0, 0</td>
<td>θ₆</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1, 0, 0</td>
<td>0, 0, 0</td>
<td>θ₇</td>
<td>0</td>
</tr>
</tbody>
</table>
in Eq. (21)

\[T_{P6R} = \begin{bmatrix}
 c_2s_{34} & -c_2s_{34} & -s_2 & 0 & 0 & 0 \\
 s_{34} & c_{34} & 0 & 0 & 0 & 0 \\
 d_1c_{234} - s_2k_1 & d_1c_{234} - s_2k_2 & c_2(a_3s_{34} + a_4s_{34} - L_1) & c_2s_{34} & -c_2s_{34} & -s_2 \\
 -d_1c_{34} & -d_1s_{34} & -a_2 - a_3c_3 - a_4c_{34} & s_{34} & c_{34} & 0 \\
 d_4s_2c_{34} + c_2k_1 & d_4s_2c_{34} + c_2k_2 & s_2(a_3s_{34} + a_4s_{34} - L_1) & s_2c_{34} & -s_2c_{34} & c_2
\end{bmatrix} \]

(21)

where \(T_{P6R} \) is the screw transformation matrix responsible for transforming the coordinates of the \(P6R \) screw expressed on the frame \(r \) on the coordinates of the frame \(0 \), \(k_1 = L_1c_{34} + a_2s_{34} + a_3s_4 \) and \(k_2 = -L_1s_{34} + a_2c_{34} + a_3c_4 + a_4 \).

The next step is to define the screws of the collision avoidance virtual chain. The most common virtual chain used to collision avoidance tasks is the \(3P3R \) virtual chain (Campos et al., 2009)(Simas et al., 2009)(Simas et al., 2011).

The \(3P3R \) virtual chain is composed by three prismatic joints, perpendicular to each other, and three rotary joints composing a spherical wrist. The first two prismatic joints, \(x_c \) and \(y_c \), are defined as tangents in relation to the collision plane and have displacements \(p_{x_c} \) and \(p_{y_c} \), respectively, as consequence the third prismatic joint \(z_c \) is normal to the collision plane and has displacements \(p_{z_c} \). The last three rotary joint are defined as \(r_x, r_y \), and \(r_z \), pointed on the same directions of \(x_c, y_c \) and \(z_c \), respectively, with displacements \(\theta_{x}, \theta_{y} \) and \(\theta_{z} \). The base of the \(3P3R \) virtual chain is located on the coordinates of the \(\vec{p}_0 = [p_{x_c}, p_{y_c}, p_{z_c}] \) expressed on inertial frame \(O_0 - x_0y_0z_0 \). The last link (end-effector) of the \(3P3R \) collision virtual chain is attached along the link 3 in the intersection with the line of the screw \(\vec{s}_4 \) (see Fig. 3).

In order to simplify the model and obtain tractable results, some considerations were adopted to compute screws of the \(3P3R \) virtual kinematic chains, as follows:

- The screws of the \(3P3R \) virtual chains are obtained using the \(P6R \) base as reference, or the inertial frame \(O_0 - x_0y_0z_0 \), and will not be required compute the screw transformation matrix;
- The \(3P3R \) is located on the collision plane such that the displacements \(p_{x_c} = 0 \) and \(p_{y_c} = 0 \);
- The collision plane is oriented in function of two angles \(\theta_{x} \) and \(\theta_{y} \) (see Fig. 3);
- are obtained using the \(P6R \) base as reference.

Considering the simplifications presented above, the screws are obtained for the \(3P3R \) virtual chains and disposed in a matrix \(J_{pla} = [\vec{s}_{x_c}, \vec{s}_{y_c}, \vec{s}_{z_c}, \vec{s}_{x_c}, \vec{s}_{y_c}, \vec{s}_{z_c}] \)

\[J_{pla} = \begin{bmatrix}
 0 & 0 & 0 & c_{l_y} & 0 & 0 \\
 0 & 0 & 0 & s_{l_z} & s_{l_z} & 0 \\
 c_{l_y} & 0 & 0 & s_{l_z} & -c_{l_z} & s_{l_z} \\
 s_{l_z} & c_{l_z} & -s_{l_z} & -s_{l_z}(p_{y_c}c_{l_z} + p_{z_c}s_{l_z}) & -p_{z_c}c_{l_y} - p_{c_z}c_{l_y} + p_{z_c}s_{l_y} & c_{l_y}(p_{y_c}c_{l_z} + p_{z_c}s_{l_z}) \\
 c_{l_y} & s_{l_z} & -s_{l_z} & s_{l_z} & c_{l_z} & -p_{z_c}s_{l_y} + s_{l_z}(p_{y_c} + p_{z_c}s_{l_y}) \\
 -c_{l_y} & s_{l_z} & s_{l_z} & -p_{y_c}c_{l_y} + s_{l_z}(p_{y_c} + p_{z_c}s_{l_y}) & c_{l_z}(p_{x_c} + p_{z_c}s_{l_y}) & -p_{y_c}s_{l_y}c_{l_y} - p_{z_c}s_{l_y}
\end{bmatrix} \]

(22)

where \(s_{l_z} = \sin(\theta_{l_z}), c_{l_y} = \cos(\theta_{l_y}), s_{l_y} = \sin(\theta_{l_y}), c_{l_y} = \cos(\theta_{l_y}), s_{l_z} = \sin(\theta_{l_z}), c_{l_z} = \cos(\theta_{l_z}) \) and \(\vec{p}_0 \) can be expressed geometrically in function of the \(P6R \) parameters, as following expressions obtained through geometric inspection:

- \(p_{x_c} = c_2(a_2 + a_3c_3) - p_{x_c}s_{l_y} \);
- \(p_{y_c} = -L_1 + a_3s_3 + p_{z_c}s_{l_y}c_{l_y} \);
- \(p_{z_c} = s_2(a_2 + a_3c_3) - p_{x_c}s_{l_y}c_{l_y} \).

With the purpose to generate the trajectory for the \(P6R \) redundant robot, another \(3P3R \) virtual chain is used. The trajectory virtual chain has as base the inertial frame \(O_0 - x_0y_0z_0 \) and its end-effector attached on the end-effector of the \(P6R \) redundant robot. The three prismatic joint are defined as \(x_d, y_d \) and \(z_d \) and their screws are pointed on direction of \(x_0, y_0 \) and \(z_0 \) with displacements \(p_{d_x}, p_{d_y} \) and \(p_{d_z} \), respectively. The three rotary joints are defined as \(r_x, r_y \), and \(r_z \) and their screws are pointed, also, on direction of \(x_0, y_0 \) and \(z_0 \) with displacements \(\theta_{d_x}, \theta_{d_y} \), and \(\theta_{d_z} \).
\[J_{\text{tra}} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & \cdots & s_d \cdots 0 & 0 & 0 & 0 & 0 \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]

where \(s_d = \sin(\theta_d), \ c_d = \cos(\theta_d), \ s_d = \sin(\theta_d), \ c_d = \cos(\theta_d) \).

Since all normalized screw, of all joints, are represented in the inertial reference frame and the constraint equation (Eq.(9)) can be constructed, and presented in Eq.(24), considering that the complete kinematic have two circuits, in agree with Davies method and graph notation (Davies, 1981)(Campos et al., 2009)(Simas et al., 2009).

\[N\dot{q} = \begin{bmatrix} \hat{s}_1 & \hat{s}_2 & \hat{s}_3 & \hat{s}_4 & \hat{s}_5 & \hat{s}_6 & \hat{s}_7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\hat{s}_{x_d} & -\hat{s}_{y_d} & -\hat{s}_{z_d} & -\hat{s}_{r_x} & -\hat{s}_{r_y} & -\hat{s}_{r_z} \end{bmatrix} \hat{q} \]

\[N_{p}\dot{q}_p = \begin{bmatrix} 0 & -\hat{s}_{x_d} & -\hat{s}_{y_d} & -\hat{s}_{z_d} & -\hat{s}_{r_x} & -\hat{s}_{r_y} & -\hat{s}_{r_z} \end{bmatrix} \hat{q}_p \]

where \(\hat{q}_p = [r_{z_c}, \dot{p}_{x_d}, \dot{p}_{y_d}, \dot{p}_{z_d}, \dot{r}_{x_d}, \dot{r}_{y_d}, \dot{r}_{z_d}]^T \).

\[N_s\dot{q}_s = \begin{bmatrix} \hat{s}_1 & \hat{s}_2 & \hat{s}_3 & \hat{s}_4 & \hat{s}_5 & \hat{s}_6 & \hat{s}_7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \dot{q}_s \]

where \(\dot{q}_s = [\dot{r}_{z_c}, \dot{p}_{x_d}, \dot{p}_{y_d}, \dot{p}_{z_d}, \dot{r}_{x_d}, \dot{r}_{y_d}, \dot{r}_{z_d}]^T \).

In the Eq.(26), \(N_s \) has screws of active and passive joints. In according to Eq.(13) a second partition can be performed on the \(N_s \) as presented in Eq.(27)

\[N_s = \begin{bmatrix} \hat{s}_1 & \hat{s}_2 & \hat{s}_3 & \hat{s}_4 & \hat{s}_5 & \hat{s}_6 & \hat{s}_7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = [N_{sa(12\times7)} | N_{sp(12\times5)}] \]

Computing the matrix \(\text{ref} W_{N_p(n-m)\times d} \), with \(\text{ref} = 4, n = 6, m = 5 \) and \(d = 6 \), that corresponds to the null space of \(N_p \), we have the Eq.(28).

\[4W_{N_p(1\times6)} = \begin{bmatrix} w_1 & w_2 & w_3 & w_4 & w_5 & w_6 \end{bmatrix}_{1\times6} \]

where:

- \(w_1 = -L_1 + a_3 s_3 + (a_2 + a_3 c_3) s_2 \frac{s_{zx}}{c_{zx}} \);
- \(w_2 = -(a_2 + a_3 c_3) (c_2 - s_2 \frac{s_{zx}}{c_{zx}}) \);
- \(w_3 = -c_2 (a_2 + a_3 c_3) \frac{s_{zx}}{c_{zx}} + \frac{1}{c_{tz}} (L_1 - a_3 s_3) \frac{s_{tx}}{c_{tx}} \);
- \(w_4 = \frac{1}{c_{tx}} \frac{s_{tx}}{c_{tx}} \);
- \(w_5 = \frac{s_{tx}}{c_{tx}} \);
- \(w_6 = 1 \).
The annihilating matrix has the following structure in Eq.(29)

\[
K = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_2 \\
w_3 \\
w_4 \\
w_5 \\
w_6 \\
\end{bmatrix}
\] (29)

Using the annihilating matrix \(K \), the matrix \(K \cdot N_{sa} \) will be a null matrix with dimension 7 \times 5, and the matrix \(K \cdot N_{sa} \) has as result the Eq.(30)

\[
K \cdot N_{sa} = \begin{bmatrix}
\hat{s}_1 \\
\hat{s}_2 \\
\hat{s}_3 \\
\hat{s}_4 \\
\hat{s}_5 \\
\hat{s}_6 \\
\hat{s}_7 \\
\end{bmatrix} = \begin{bmatrix}
s_x \quad \frac{s_y}{c_x} \quad (a_2 + a_3c_3)(c_2 - \frac{s_x}{c_x}c_y) \quad -a_3(\frac{c_3s_x}{c_x}c_y + \frac{s_2c_3c_y}{c_x}c_y) \quad \hat{\theta}_1 \quad \hat{\theta}_2 \quad \hat{\theta}_3 \quad \hat{\theta}_4 \quad \hat{\theta}_5 \quad \hat{\theta}_6 \quad \hat{\theta}_7 \\
\end{bmatrix} \] (30)

where the respective \(\hat{\theta}_{sa} = [\hat{L}_1, \hat{\theta}_2, \hat{\theta}_3, \hat{\theta}_4, \hat{\theta}_5, \hat{\theta}_6, \hat{\theta}_7] \).

It is important to emphasize that the screws presented on Eq.(30) are represented on the inertial frame \(O_0 = x_0y_0z_0 \). In following, it is analyzed the singularities of the kinematic system composed by \(6P \) redundant robot, \(3P3R \) collision avoidance virtual chain and \(3P3R \) trajectory virtual chain.

4. ANALYSIS OF SINGULARITIES

Equation (18) shows how to compute the velocities of the active secondary joints. The computation is feasible if the matrix \(K \cdot N_{sa} \) can be inverted. The determinant of \(K \cdot N_{sa} \) may be used to evaluate the conditions under which this matrix is not invertible, and respectively, the singular postures that the kinematic system can assume. So, computing the determinant of \(K \cdot N_{sa} \), defined as \(D_{K \cdot N_{sa}} \) we have the Eq.(31).

\[
D_{K \cdot N_{sa}} = -a_2a_3(a_2 + a_3c_3 + a_4c_4)s_3s_6(s_1c_2s_34 + s_1c_1s_3c_4 + c_1c_3s_2s_34)
\] (31)

Analyzing the expression of the determinant in Eq.(31), the following singularities can be observed:

1. \(s_3 = 0 \) \(\rightarrow \) Corresponds to the alignment of links 2 and 3, when \(\theta_3 = k\pi \), for \(k = 0, 1, \cdots \).

2. \(s_5 = 0 \) \(\rightarrow \) Corresponds to the alignment of joint 6 and 7, when \(\theta_6 = k\pi \), for \(k = 0, 1, \cdots \) - note in Fig. 3, that in the initial posture of the \(6P \) robot, the screw axes \(\hat{s}_5 \) and \(\hat{s}_7 \) are parallel.

3. \((a_2 + a_3c_3 + a_4c_4) = 0 \) \(\rightarrow \) According with the structure of the robot, it can be observed that the links 2 and 3, with dimensions \(a_2 \) and \(a_3 \) respectively, are contained in a plane, defined as \(p_a \) (when \(\theta_3 \neq 0 \)). A second plane \(p_b \) parallel to \(p_a \) can be defined, distanced \(d_4 \) from the plane \(p_a \) and containing the line 4 along to the its length \(a_4 \). Making a geometric analysis, the singular posture of this expression shows that the distance between the center of the spherical wrist and the line along of the axis of the joint 2 (\(\hat{s}_2 \) axis, see Fig. 3) can not be equal to \(d_4 \). If this distance is \(d_4 \), the robot has restricted their movements imposed in the normal direction of the plane \(p_b \). Using another form of interpretation, it can be say that, in this singular posture, the velocities imposed by screws directed to the normal of \(p_a \) will be reciprocal to the screw axis of the joint 2. Figure 4 shown the \(6P \) posture corresponding to the singular posture described.

4. \((s_1c_2s_34 + s_1c_1c_3c_4 + c_1c_3s_2s_34) = 0 \) \(\rightarrow \) This expression can be rewritten as a dot product of the vectors \(\vec{u} \) and \(\vec{v} \) as show the Eq.(32)

\[
\begin{bmatrix}
s_1 \\
-s_1c_4 \\
c_1c_3 \\
-c_2s_34 \\
s_2c_34 \\
\end{bmatrix} \cdot \begin{bmatrix}
c_2s_34 \\
-c_34 \\
-c_3 \\
s_1c_2s_34 + s_1c_1s_3c_4 + c_1c_3s_2s_34 \\
\end{bmatrix} = \vec{u} \cdot \vec{v} = (s_1c_2s_34 + s_1c_1c_3c_4 + c_1c_3s_2s_34)
\] (32)

Studying vectors \(\vec{u} \) and \(\vec{v} \), it can be identified that these vectors correspond to direction of the joint \(z_c \), on \(3P3R \) collision avoidance virtual chain and the vector \(y_4 \) of the frame of the link 4, respectively. In this sense, the singularity occurs when these vectors are perpendicular. Figure 5 presents the vectors \(z_c \) and \(y_4 \), and the angle \(\vec{v} \), which should be different from \(\pi/2 \).

The analysis developed here, shown the potential of using virtual kinematic chains in obtaining an extended Jacobian for spatial robots. The extended Jacobian allowed to evaluate the singularities belonging to the robot kinematic structure only, without the appearance of algorithmic singularities, as in the classical methods.
Figure 4. Singular posture for P6R redundant robot corresponding to expression: \((a_2 + a_3c_3 + a_4c_{34}) = 0\)

Figure 5. Singular condition for P6R redundant robot from collision avoidance virtual chain.

5. CONCLUSION

Many manipulators have been designed to operate in confined environments. As shown in this paper, operations in confined environments require methods to evaluate and to prevent that any collision may come along during the task performing.

Therefore, the Simas approach solution may be apply to avoid collisions, studying a P6R redundant robot operating in confined environments (Simas et al., 2009). It is based on screw theory and in the use of virtual chains to determine its trajectories and to avoid collision. However, the paper do not present a study of the motion limits and the singular postures of the P6R including the collision avoidance virtual chain. Another work, (Simas et al., 2011) presents an analytical study of singularities for a planar redundant robot, based on reciprocal screws using virtual chains and annihilate matrix.

This paper presented a study of singularities for a P6R redundant robot operating in a confined environment. Considering the possibility of collisions, Assur virtual chains were used in order to reposition the P6R robot away of some imminent collision with any part inside its workspace.

The use Assur virtual chains for collision avoidance has became complex the differential kinematic model, obtained by the Davies method. A simplified differential kinematic model was then obtained using the concept of annihilating matrix, resulting in an extended Jacobian, similar to others proposed in references, but without algorithmic singularities that do not belong to kinematic chain.

Partial results were presented and a final expression for the determinant of the differential kinematics, \(D_{\mathcal{K}_N}\), identified all singular postures that the kinematic system, formed by P6R redundant robot and virtual chains for trajectory
generation and collision avoidance, can assume.

Results showed the viability of using the annihilating matrix as a way to simplify the differential kinematic modeling for spatial kinematic systems. Furthermore, the development showed that the obtained Jacobian is an extended Jacobian, invertible, whose the determinant represents only singularities belonging to the kinematic system.

Agreement with the second task developed as example in this paper, the result is useful in generation trajectory systems, since singular conditions should be monitored, and most importantly, includes the singular postures arising from collision avoidance strategy.

Future works can be developed aiming to minimize the need for geometric inspection, as shown in Eq.(22), and to further simplify the screws obtained, since they have its formulation dependent on the choice of a link reference.

6. REFERENCES

7. RESPONSIBILITY NOTICE

The authors are the only responsible for the printed material included in this paper.