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Abstract

This paper describes a semi-analytical procedure for solution of dam-reservoir interaction in the fundamental
mode shape. The fundamental frequency is solved using a generalized coordinate approach mixed with a
wave equation analytical solution for a flexible boundary, resulting in a coupled system equilibrium frequency
equation. Pressure field in the fluid domain and fluid added mass are obtained upon the solution of this
equation. A full development of the theory will be presented, along with application examples. Results indicate
good agreement between finite element solution for the coupled system and the resulting fluid added mass
solution. This methodology provides a useful resource for solution of the coupled system and can be readily
applied in dam engineering problems.
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1 Introduction

The aim of this work is to evaluate the influence of hydrodynamics pressures in systems with fluid-
structure coupling. Two approaches may be used: solutions involving both solid and fluid domain, and
representation of fluid effects through added masses along the structure. The added mass technique
consists in substituting the hydrodynamic pressures exerted on the structure’s face by a set of masses,
which are proportionally accelerated as the structure vibrates. This provides an equivalent system
which is able to represent the coupling effects for a given mass configuration. The major advantage
of this sort of representation is the elimination of an additional step in the solution of the coupled
problem, which is the consideration of fluid domain.

The fluid-structure interaction problem involves the determination of structure and fluid responses.
However, it is important to emphasize that these responses are not independent. Fluid domain pressure
field depends on the structural displacement, which in turn depends on the forces exerted by the
fluid on the structure’s face. A very efficient solution for this problem consists in determining, for
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an imposed structural displacement, the fluid produced pressure field. This provides a possible way
to develop analytical solutions for the fluid domain. Numerous solutions that consider compressible
and incompressible fluids are available in literature, either for rigid boundaries or flexible boundaries
(with an imposed deformed shape along fluid-structure interface). The pressure field produced by
these solutions along the fluid-structure interface represents exactly the loads that must be added to
the structure, providing the coupling effects between these two systems. The combination between
analytical solution for pressure in fluid domain and analytical solution for structural response allows
the development of a global solution that provides the effects of fluid produced actions in the structure.

The studies presented below involve the analysis of dynamic systems in generalized coordinates,
considering only the structure’s fundamental mode shape. The results involving coupled and uncoupled
systems with effects of added mass will be compared in order to validate the proposed procedure. The
effects produced by the fluid added mass presence will be studied, including its application in practical
dam engineering analysis.

2 Literature review

The problem of dam-reservoir interaction has been widely studied in the last decades. The first attempt
to solve this problem was made by Westergaard [1]. He considered a dam accelerated at its base as
a perfect rigid body with a continuum infinite length reservoir. Because of the perfect rigidity of
the dam, its acceleration along the structure was considered constant and equal to the foundation’s
acceleration. For these conditions, Westergaard found out a solution for the pressure field, which
acts on the dam’s face when it is under a seismic excitation. These studies demonstrated that fluid
pressure had a parabolic shape, being proportional to earthquake acceleration. This is the simplest
form of treating the dam-reservoir problem. However this solution has the limitations of not being
valid for flexible structures and not considering the fluid compressibility.

Many other researchers determined the hydrodynamics pressure exerted on the dam’s face as a result
of earthquake ground motions for an incompressible fluid. To determine it using the Finite Element
Formulation, a problem in modeling arises for unbounded domains of reservoir. To solve this problem,
the unbounded domain should be truncated at a certain distance away from the structure. Zienkiewicz
& Newton [2] used the Sommerfeld’s radiation boundary condition for the truncating surface; Sharan
[3] and Küçükarslan [4] determined numerically other boundary conditions for truncating surface of
unbounded fluid domain; Silva & Pedroso [5] determined a solution for this problem using separation
of variables technique for the same boundary conditions used for Zienkiewicz & Newton and Sharan
& Küçükarslan, and proposed a new boundary condition.

Chopra [6] found out that water compressibility plays an important role in dam-reservoir interaction
problems. According to his studies, fluid compressibility can significantly modify the seismic response.
Chopra [7] investigated the response of a concrete gravity dam under horizontal earthquake excitation
considering interactions effects and water compressibility, and concluded that commonly used sim-
plified analysis, which neglect the interaction between dam and reservoir, and water compressibility,
can result in significant errors. Chopra (1978) proposed a methodology in which the above-mentioned
considerations were included.
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Chopra & Fenves [8, 9] studied a system compound of a concrete gravity dam including the effects of
water-foundation-rock interaction and the alluvium, and other sediments that deposit at the bottom
of reservoirs. The interaction between the water and the reservoir bottom materials is approximately
modeled by a boundary condition that permits partial absorption of hydrodynamic pressure waves at
the reservoir bottom. In brief, it was show that the earthquake response of concrete gravity dam is
increased by dam-water interaction, but decreased by reservoir bottom absorption with the magnitude
of these effects dependent on the flexibility of the foundation rock, and dam-water interaction and
reservoir bottom absorption both have a profound effect on the response of dams to vertical ground
motion, but relatively less effect on the response to horizontal ground motion if foundation-rock
flexibility is considered.

Many researches, for instance, Saini et al. [10], Chopra & Chakrabarti [11], Hall & Chopra [12],
Fenves & Chopra [13], Fok & Chopra [14], and Lotfi et al. [15] studied dam-reservoir interaction
problem in the frequency domain considering water compressibility using the Finite Element Method.

Ribeiro [16] proposed a methodology which provides an analytical solution of stress field in concrete
gravity dams during earthquakes. This solution was developed taking the Gravity Method as a basis.
This method, proposed by the United States Bureau of Reclamation – USBR [17], is designed for
static and pseudo-static analysis (dam as a perfect rigid body and fluid incompressible) of concrete
gravity dams. Ribeiro combined this solution with the methodology proposed by Chopra [18]. This
combination allowed consideration of water compressibility and structural flexibility in the Gravity
Method. The achieved results with this methodology are slightly conservative when compared to
Chopra’s procedure. It was shown that structural flexibility and water compressibility increases the
earthquake response of concrete dams.

Silva [19] proposed an analytical formulation using separation of variables technique for the hydro-
dynamic pressure exerted on the dam’s face under seismic excitation, considering structural flexibility
and water compressibility. His results indicated a good agreement with the Finite Element Method.

3 Fluid domain analytical solution

Consider the following domain which is governed by the wave equation in two dimensions and repre-
sented in Fig. 1, where S1, S2, S3 and S4 represent the following boundary conditions:

S1 =
∂p(x, y, t)

∂x

����
x=0

= −ρφÜg (1)

S2 =
∂p(x, y, t)

∂y

����
y=0

= 0 (2)

S3 = p(x, y, t)|x→8 = 0 (3)

S4 = p(x, y, t)|y=H = 0 (4)
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Figure 1: Fluid domain representation with boundary conditions.

and Üg represents the acceleration at the structure’s free edge (y = H). Silva [19] proposed a solution
for this problem where the shape function φ (y) can be defined as an arbitrary function. This solution
considers the fluid compressibility and depends on the frequency of the coupled system (ω).

p (x, y) = 2ρÜg

∞X
n=1

Inq
µ2

n −
�

ωH
c

�2 e
−
È

µ2
n−(ωH

c )2 x
H cos

�
µn

y

H

�
(5)

In =
Z H

0
φ
� y

H

�
cos
�
µn

y

H

�
dy (6)

µn =
(2n− 1)π

2
(7)

In the case of analysis that will be developed in this study, the function adopted corresponds to the
fundamental deformed shape. Therefore, an analytical solution for the pressure field produced by the
structural displacement in the fundamental vibration mode is achieved. The pressure field exerted on
the fluid-structure interface can be obtained by setting up x = 0 in the above equations. Doing so, we
get:

p (0, y) = 2ρÜg

∞X
n=1

Inq
µ2

n −
�

ωH
c

�2 cos
�
µn

y

H

�
(8)

which represents the pressure field developed along the fluid-structure interface for a boundary with
acceleration proportional to the adopted shape function φ (y). The latter expression is the starting
point for the inclusion of the fluid participation in the dynamic response of the structure. It is important
to remember that the parameter ωH/c, called compressibility parameter, is an important indicator
in this type of solution (the pressure field suffers important modifications when this parameter varies,
as shown in Fig. 2).
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Figure 2: Hidrodynamic pressure field variation along the reservoir for ωH/c = 0 (a) and ωH/c = 1 (b).

The characteristics of the hydrodynamic pressure approaches the behavior of an incompressible
fluid as this parameter tends to zero (Fig. 3), resulting in a solution of a flexible boundary in an
incompressible fluid. This indicates that the above solution is a general, valid for both compressible
and incompressible fluid behavior.

 
 

 

 

 
  

Figure 3: Pressure along fluid-structure interface for ωH/c parameter variation (fundamental mode).

4 Analytical solution for the structural system

The structural problem is represented by a clamped-free beam, where the generalized properties of the
system (mass, stiffness and excitation) for an arbitrary vibration function were derived. Thus, it will
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be possible to represent the dynamic response of the model through a single coordinate X (t). This
kind of solution will be very useful for the introduction of fluid effects since the analytical solution for
this domain was obtained for an imposed frequency (ω) and shape function φ (y).

Consider the structure below with the arbitrary following parameters: mass per unit length µ (y),
flexural stiffness EI (y) and under a transverse loading P (y, t).

  

 

 

 

 
  

Figure 4: Structural model representation.

where the transverse-displacement response is represented by v(y, t) and is related to the deformation
at the top of the beam X (t) by means of an arbitrary shape function φ (y). Doing so, we get:

v (y, t) = φ (y)X (t) (9)

The resistant forces in this system during the structure displacement are given by Inertial Force
(Eq. 10) and Internal Bending Moment (Eq. 11):

fi (y, t) = µ (y) v̈ (y, t) = µ (y)
�
Ẍφ (y)

�
(10)

m (y, t) = EI (y)
∂2v

∂y2
= EI (y)

�
X

d2φ (y)
dy2

�
(11)

Thus, it is assumed that only bending deformations will occur and the elastic moments developed
will be proportional to curvature ∂2v/∂y2. The system’s equation of motion can be obtained through
the application of the principle of virtual work, equaling the work of internal forces to the work of
external forces. The virtual displacement (δv) consistent with structural deformation φ is given by:
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δv = φ (y) δX (12)

where δX corresponds to an arbitrary virtual displacement in the free edge of the structure. The work
of external forces during this virtual displacement is given by:

We =
Z H

0
P (y, t) δv dy = δX

Z H

0
P (y, t)φ (y)dy (13)

The work of the internal forces (inertia and bending moment) is given by:

Wi =
Z H

0
fi (y, t)δv dy +

Z H

0
m (y, t)δ

∂2v

∂y2
dy (14)

Substituting the expressions of inertia force (Eq. 10) and internal bending moment (Eq. 11) in the
expression above, and remembering that:

δv = φ (y) δX (15)

δ
∂2v

∂y2
= δX

d2φ (y)
dy2

(16)

provides:

Wi =
Z H

0
µ (y)

�
Ẍ φ (y)

�
φ (y) δX dy +

Z H

0
EI (y)

�
X

d2φ (y)
dy2

�
δX

d2φ (y)
dy2

dy (17)

When simplified, the expression above results in:

Wi = ẌδX

Z H

0
µ (y) [φ (y)]2 dy + XδX

Z H

0
EI (y)

�
d2φ (y)

dy2

�2
dy (18)

Equaling external work with internal work and dividing the resultant expression by the arbitrary
virtual displacement δX, gives:Z H

0
P (y, t)φ (y)dy = Ẍ

Z H

0
µ (y) [φ (y)]2dy + X

Z H

0
EI (y)

�
d2φ (y)

dy2

�2
dy (19)

Finally, introducing the following notations, we get the Generalized Mass M̃ (Eq. 20), the General-
ized stiffness K̃ (Eq. 21), and the Generalized Force P̃ (Eq. 22):
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M̃ =
Z H

0
µ (y) [φ (y)]2 dy (20)

K̃ =
Z H

0
EI (y)

�
d2φ (y)

dy2

�2
dy (21)

P̃ =
Z H

0
P (y, t)φ (y)dy (22)

And substituting these notations in Eq. 19, results in:

M̃Ẍ + K̃X = P̃ (t) (23)

This is the system’s dynamic equilibrium equation which has a vibration frequency equal to:

ω =
È

K̃/M̃ (24)

It should be emphasized that the generalized stiffness obtained for this system includes only the
effects of bending deformation. Additional effects can be introduced through the modification of this
generalized parameter. Damping could also be added to this structure, and in this case it would be
more appropriate to express it by damping ratio (ξ). Thus, we have:

C̃ = 2ξM̃ω (25)

5 Coupled problem analytical solution

The solutions presented above are valid for each isolated domain, both solid and fluid. However, a
problem of great interest arises when it is necessary to verify the interaction effects produced between
these two systems. In the case of the solution presented for the fluid domain, it is known the pressure
field for a particular shape function. This pressure field can be properly added to the structural
solution, since it is known the external forces produced by the hydrodynamic interaction. So, we have:

P (y, t) = p (0, y) = 2ρẌ
∞X

n=1

Inq
µ2

n −
�

ωH
c

�2 cos
�
µn

y

H

�
(26)

Where the external forces are associated to the coupled frequency (ω) of the system and depend on
the coupled shape function φ (y) of the structure. It is important to remember that the term Üg was
properly substituted by Ẍ, since in the coupled system accelerations of the free edge of the structure
and of the flexible boundary are equal. Substituting the last equation (Eq. 26) in the generalized force
equation (Eq. 22), results in:

Mechanics of Solids in Brazil 2009, H.S. da Costa Mattos & Marcílio Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-43-7



Semi-analytical solution of dam-resevoir interaction in the fundamental mode shape 453

P̃ (t) = Ẍ

Z H

0

242ρ
∞X

n=1

Inq
µ2

n −
�

ωH
c

�2 cos
�
µn

y

H

�35φ (y) dy = Ẍ

Z H

0

�
β

φ (y)

�
[φ (y)]2dy (27)

It is interesting to note the similarity between the simplified result of this expression and the
generalized mass equation in the structural model. We can rewrite the dynamic equilibrium equation
of the structure to check the influence of this parameter. Thus:

M̃Ẍ + K̃X + Ẍ

Z H

0

�
β

φ (y)

�
[φ (y)]2dy = 0 (28)

In this equation, the generalized force expression was placed on its left side, since the hydrodynamic
pressures acts in the same direction of the inertia and elastic forces. We can rewrite Eq. (28), noticing
that there are two terms along with Ẍ. This results in:�

M̃ +
Z H

0

�
β

φ (y)

�
[φ (y)]2dy

�
Ẍ + K̃X = 0 (29)

This equation represents the free-vibration of the structural model with a generalized mass produced
by the interaction between fluid and solid domain. Physically, this means that the structure in contact
with the fluid presents an additional vibrating mass which is distributed per unit length because the
expression for generalized mass can be rewritten as follows:

M̃total =
Z H

0

§
µ (y) +

�
β

φ (y)

�ª
[φ (y)]2dy (30)

where β
φ(y) represents the added mass per unit length caused by fluid presence.

The new dynamic equilibrium equation of the system is given by:

M̃totalẌ + K̃X = 0 (31)

where it should be remembered that the generalized stiffness parameter is still defined by:

K̃ =
Z H

0
EI (y)

�
d2φ (y)

dy2

�2
dy (32)

It is important to remember that the shape function φ (y) now refers to the coupled system. There-
fore, it should be taken great care not to confuse the shape function of the coupled system with the
one for the uncoupled system. Similarly, the vibration frequency ω also refers to the coupled system
and is given by:
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ω =

s
K̃

M̃total

(33)

This frequency equation, although presented in a simple manner, is not an easy problem to be
solved. It should be noted that the frequency is a function of the generalized stiffness, which is a
function of the coupled system shape function φ (y). Also, the system’s total mass is a function not
only of φ (y), but also a function of the coupled frequency (ω) of the system. Therefore, this problem
defines only one equation and two unknown parameters.

6 Application example 1 – incompressible fluid

In this example a cantilever beam of uniform cross section will be analyzed. By this way, it is intended
to validate the afore-mentioned procedure and verify the effects produced by fluid-structure coupling
in the fundamental mode. Figure 5 and Table 1 illustrates the structure that will be analyzed and its
material and geometrical properties:

 
 
 

 
 
 

 
 

 
 
 
 
  

Figure 5: System representation.

Table 1: Geometrical and material properties.

a 1.00 m

b 0.10 m

H 1.00 m

Transverse Young’s
Modulus (E)

2.10 x 104 MPa

Structural mass
density (ρe)

2000 kg/m3

Fluid mass density
(ρf )

1000 kg/m3

Fluid sonic velocity
(c)

1500 m/s

6.1 Uncoupled solution

For the uncoupled solution, the generalized mass and stiffness defined for the structural domain can
be used. The exact fundamental mode shape function for a cantilever beam is given by:
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φ (y) =
1
2

cosh
�
1.8751

y

H

�
− 1

2
cos
�
1.8751

y

H

�
−0.3670 sinh

�
1.8751

y

H

�
+0.3670 sin

�
1.8751

y

H

�
(34)

Substituting the above equation along with system’s material and geometrical properties in the
generalized parameters gives:

M̃ =
Z H

0
µ (y) [φ (y)]2 dy = µ

Z H

0
[φ (y)]2 dy ∼= 0.25µH = 5.00× 10

Ns2

m
(35)

K̃ =
Z H

0
EI (y)

�
d2φ (y)

dy2

�2
dy = EI

Z 1

0

�
d2φ (y)

dy2

�2
dy ∼= 3.09

EI

H3
= 5.41× 106 N

m
(36)

ω =
È

K̃/M̃ = 328.94
rad

s
(37)

The last equation represents the fundamental frequency for uncoupled system.

6.2 Coupled solution

For calculation of generalized parameters including coupling effects, a previous knowledge of the shape
function φ (y) of the system is needed. The exact solution for the uncoupled fundamental mode shape
is known. Therefore, we will assume that in the coupled system the fundamental mode shape function
does not suffer influence due to fluid presence. So, it is assumed that the deformed shape function
is identical in both coupled and uncoupled systems (although this kind of behavior does not always
happens, as it will be verified later). The same problem occurs in respect to the coupled frequency.
This parameter is also needed for calculation of the generalized added mass. However, this frequency
is also an unknown parameter of the problem. But, as mentioned before, it is possible to find the
system’s frequency solution with an imposed shape function. To simplify the mathematical operations
involved in calculating the generalized added mass, which leads to a great computational effort, a
polynomial approximation to the fundamental exact mode shape is adopted. This leads to:

φapprox. (y) = −0.6457
� y

H

�3

+ 1.6082
� y

H

�2

+ 0.037
� y

H

�
− 0.0016 (38)

For M̃ and K̃, the exact deformed shape defined previously will be adopted. Special attention
should be given to use of polynomial approximations in parameter K̃, which involves second order
derivatives of φ (y) in its formulation. It should be noted that curves of polynomial approximation can
produce unsatisfactory results for higher order derivatives of a particular function. Figure 6 compares
the results obtained for the exact shape function and the polynomial approximation.

The equation for fundamental frequency solution is given by:

ω =
È

K̃/M̃total =

Ì
5.41× 106

5.00× 10 +
RH
0

�
β

φaprox.(y)

�
[φaprox. (y)]2dy

(39)

This equation can be rewritten as:
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Figure 6: Comparison between exact and polynomial approximation derivatives.

5.41× 106 −
�

5.00× 10 +
Z H

0

�
β

φaprox. (y)

�
[φaprox. (y)]2dy

�
ω2 = 0 (40)

where:

β = 2ρ
∞X

n=1

Inq
µ2

n −
�

ωH
c

�2 cos
�
µn

y

H

�
(41)

The solution of the fundamental frequency equation is related to calculation of β parameter, which
depends on the number of terms used in summation. The results obtained using Maple 12 software for
evaluation of Eq. (40) are listed in Table 2. These results are compared to a reference value obtained
using the Finite Element Method (FEM) for a coupled system.

Table 2: Frequency, number of terms used in summation and processing time.

Number of terms in
summation

3 5 10 20 100 FEM
(reference)

Frequency (rad/s) 225.5931 223.2586 222.2825 222.0393 221.9615 222.2111

Processing time (s) 2.13 2.54 8.00 63.56 23913.88 -
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It can be observed that the number of terms in summation exerts little influence on results, which
achieves fast convergence to 222 rad/s. However, processing time is heavily influenced by this parame-
ter. When compared to the reference value, the relative error is close to 0.1%. This frequency represents
a decrease of 32.5% when compared to the uncoupled case. The coupled frequency, once established,
allows the calculation of the added mass. Thus:

M̃fluid =
Z H

0

�
β

φ (y)

�
[φ (y)]2dy = 5.98× 10

Ns2

m
(42)

This corresponds to a value greater than the generalized structural mass. Thus, we have the following
parameters for the generalized coupled case:

M̃ = 5.00× 10 + 5.98× 10 = 10.98× 10
Ns2

m
(43)

K̃ = 5.41× 106 N

m
(44)

It is important to check the value of the compressibility parameter of this problem, which is given
by:

ωH

c
=

222.00 1
s × 1m

1500m
s

∼= 0.15 (45)

This value indicates a close to an incompressible fluid behavior. Thus, it is concluded that satisfac-
tory results would be obtained if the hypothesis of an incompressible fluid was used. In fact, considering
this behavior, the achieved frequency would be close to 222.20 rad/s. This value is almost identical
to the value obtained for the compressible analysis with a great advantage: that is the elimination of
ω in the β parameter.

6.3 Comparative studies between analytical and numerical results (forced vibration)

The equation of motion in free vibration for the structural coupled system can be built after the
establishment of generalized parameters. We have:

[5.00× 10] Ẍ +
�
5.41× 106

�
X = 0 (uncoupled) (46)

[10.98× 10] Ẍ +
�
5.41× 106

�
X = 0 (coupled) (47)

For this analysis it will be defined a sine wave excitation applied at the structure’s free edge, given
by:

P̃ (t) = 106 × sin (50t) (48)

Substitution of Eq. (48) in (46) and (47), gives:
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[5.00× 10] Ẍ +
�
5.41× 106

�
X = 106 × sin (50t) (uncoupled) (49)

[10.98× 10] Ẍ +
�
5.41× 106

�
X = 106 × sin (50t) (coupled) (50)

Solution of the above equation results in:

X (t) = −0.028769× sin (328.8931t) + 0.189239× sin (50t) (uncoupled) (51)

X (t) = −0.043870× sin (221.9586t) + 0.194748× sin (50t) (coupled) (52)

Velocity and acceleration solutions are given, respectively, by first and second derivatives of Eq.
(51) and Eq. (52). Comparison of these functions with coupled and uncoupled finite element solutions
is shown on the Fig. 7.

7 Application example 2 – compressible fluid

In this analysis the previous example will be studied with the same geometrical and material properties,
except for the Young’s modulus, that will be taken as 2.10 x 1012 MPa.

7.1 Uncoupled solution

For the uncoupled solution the following generalized parameter are readily obtained:

M̃ =
Z H

0
µ (y) [φ (y)]2 dy = µ

Z H

0
[φ (y)]2 dy ∼= 0.25µH = 5.00× 10

Ns2

m
(53)

K̃ =
Z H

0
EI (y)

�
d2φ (y)

dy2

�2
dy = EI

Z 1

0

�
d2φ (y)

dy2

�2
dy ∼= 3.09

EI

H3
= 5.41× 108 N

m
(54)

ω =
È

K̃/M̃ = 3289.34
rad

s
(55)

7.2 Coupled solution

The fundamental frequency equation is given by:

5.41× 108 −
�

5.00× 10 +
Z H

0

�
β

φaprox. (y)

�
[φaprox. (y)]2dy

�
ω2 = 0 (56)

The results obtained using Maple 12 software for evaluation of Eq. (56) are listed in Table 3. These
results are compared to a reference value obtained using the Finite Element Method (FEM) for a
coupled system.
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Figure 7: Comparison between FEM response (including all modes) and analytical results. Uncoupled
(a) and coupled systems (b).

The above result reaches a fast convergence to values near 1990 rad/s. When compared to the
reference value this result indicates a less than 0.2% relative error.

With the fundamental frequency the following generalized parameter is readily obtained:

M̃fluid =
Z H

0

�
β

φ (y)

�
[φ (y)]2dy = 8.67× 10

Ns2

m
(57)
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Table 3: Frequency, number of terms used in summation and processing time.

Number of terms in
summation

3 5 10 20 FEM
(reference)

Frequency (rad/s) 2006.1886 1995.4492 1990.8595 1989.7070 1986.0520

Processing time (s) 2.10 2.84 7.69 60.15 -

As in the previous analysis, this value is higher than the structural’s generalized mass. It should be
noted that this fluid added mass is greater than the one obtained in the incompressible case, indicating
the effect of a higher compressibility parameter. The added mass produced a 39.5% reduction of the
fundamental frequency. In the incompressible analysis this reduction was of 32.5%. These results
indicate that fluid compressibility must not be neglected, and that higher fluid added masses are
expected with the increase of this parameter, given by:

ωH

c
=

1990.001
s × 1m

1500m
s

∼= 1.33 (58)

Equation (58) indicates a compressible fluid behavior. Treating this problem with an incompressible
hypothesis could lead to considerable errors. In fact, the fundamental frequency obtained using an
incompressible fluid model would result in 2221.00 rad/s (11.6% higher than the one obtained using
a compressible fluid model).

7.3 Comparative studies between analytical and numerical results (forced vibration)

The following structural responses results from a sine wave P̃ (t) = 106 × sin (450t) excitation:

X (t) = −0.000258× sin (3288.9312t) + 0.001884× sin (450t) (uncoupled) (59)

X (t) = −0.000441× sin (1988.9737t) + 0.001948× sin (450t) (coupled) (60)

Comparison of these functions and its derivatives with finite element solutions is shown on Fig. 8.

8 Application example 3 – concrete gravity dam

In this example a concrete gravity dam with geometrical and material properties given by Fig. 9
and Table 4 will be analyzed (FERC, 2002). However, the analytical generalized procedure will not be
used in this analysis. Analytical treatment of these parameters is a complex task, since this structure’s
geometry is irregular and the fundamental mode shape occurs in both directions (varying both in x and
y). Instead it will be used a semi-analytical procedure, where the uncoupled generalized parameters
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Figure 8: Comparison between FEM response (including all modes) and analytical results. Uncoupled
(a) and coupled systems (b).

are going to be obtained from an uncoupled finite element analysis. These results will be introduced
in the frequency equilibrium equation, for evaluation of the fundamental coupled frequency.

The generalized parameters obtained in the uncoupled finite element analysis are listed on Table 5.
Additionally Eq. (61) indicates a polynomial approximation to the uncoupled fundamental mode shape
function. These parameters along with this function are used in the frequency equation, for solution
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Figure 9: System representation.

Table 4: Geometrical and material properties.

a1 30.48 m

a2 4.57 m

h1 41.45 m

h2 7.32 m

Transverse Young’s
Modulus (E)

2.10 x 104 MPa

Structural mass
density (ρe)

2000 kg/m3

Fluid mass density
(ρf )

1000 kg/m3

Fluid sonic velocity
(c)

1500 m/s

of the coupled system fundamental frequency.

Table 5: Generalized parameters – fundamental mode uncoupled analysis.

Generalized Mass
�

Ns2

m

�
Generalized Stiffness

�
N
m

�
Earthquake Participation Factor

�
Ns2

m

�fM ÜK eL
1.0164×105 2.1085× 108 2.4086× 105

φapprox. (y) = 0.10851
� y

H

�4

+ 0.61270
� y

H

�3

+ 0.07918
� y

H

�2

+ 0.20411
� y

H

�
+ 0.00105 (61)

The uncoupled fundamental frequency of this system is given by: ω =
È

K̃/M̃ ∼= 45.55 rad
s .

These parameters can be readily substituted in the frequency equation. Results are shown on Table 6.
From Table 6 it can be observed that the coupled frequency converges to a value near 32.90 rad/s.

Comparison with the reference value indicates a 1% relative error. This added mass produced a 27.8%
reduction of the fundamental frequency. This generalized parameter is given by:

M̃fluid =
Z H

0

�
β

φ (y)

�
[φ (y)]2dy = 0.9339× 105 Ns2

m
(62)

Verification of the compressibility parameter indicates a compressive behavior for this analysis:
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Table 6: Frequency, number of terms used in summation and processing time.

Number of terms in
summation

3 5 10 20 FEM
(reference)

Frequency (rad/s) 33.4910 33.0988 32.9259 32.8822 33.2462

Processing time (s) 1.23 1.88 6.80 46.81 -

ωH

c
=

32.901
s × 48.77m

1500m
s

∼= 1.07 (63)

The fluid added mass corresponds to approximately 92% of the structural mass. If this mass is
included in the finite element model, representation of the coupled effects in the fundamental mode
could be produced without the need of the reservoir. It should be noticed the different behavior
between the structural and the fluid added mass. The first one is related to displacements in both
directions (x and y). However, the fluid mass is related only to horizontal displacements given by
φ (y), since it is assumed that hydrodynamic pressures develop only due to horizontal accelerations.
When the model participation in the y direction is minimal and there is no variation of the mode
shape in the transverse direction, then the entire model could be approximated by a single function
for all generalized parameters, including the fluid added mass. This is exactly what happened in the
previous examples.

For determination of the additional masses that will be inserted in the model, it will be necessary
to calculate the β parameter. However calculation is needed only on the exact node locations where
these masses are going to be inserted. Consider, as an example, the finite element model illustrated on
Fig. 10. Added masses will be placed in 24 nodes along the dam’s upstream face. The main objective
is to replace the integral given in Eq. (62) by a discrete product of masses and related displacements.
Table 7 indicates the calculation procedure.

After the inclusion of the added masses a fundamental modal analysis is required. This will provide
the coupled frequency as well as the new deformed shape of the system. It should be noticed that
these masses are related only to the fundamental mode of vibration. Figure 11 indicates a comparison
between deformed shape results. One of the curves is a representation of transversal displacements x

along the dam’s height (in this problem defined as Ux). The other one indicates the total displacement,
including both directions (x and y, in this problem defined as Usum ). We are assuming that fluid
added masses should participate only in the transverse direction, but in the first approach the vertical
displacements on the dam’s upstream face are being neglected (Table 7). From Fig. 11 it can be noticed
that this first approach might lead to poor results, since in the finite element model these masses will
participate in both directions. Another option, that will provide much better results, is to introduce
a modification in column (c), given by:
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Figure 10: Finite element model.
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         uncoupled 
               usum  ����   coupled ∆  ∆  ∆    added mass 
 

Figure 11: Deformed shape results.

Table 7: Added mass calculation procedure – first procedure (neglecting vertical displacements).

(a) (b) (c) (d) (e) (f)

Node Elevation φ (y) Pressure1 (normalized) Nodal tributary area
�
m2
�

Nodal mass2
�
106Ns2/m

�
(m) pnorm Anode Mnode

48 2.0726 0.0099 0.1347 2.0726 1.3735

49 4.1453 0.0194 0.1358 2.0726 0.7093

50 6.2179 0.0297 0.1373 2.0726 0.4679

51 8.2906 0.0411 0.1392 2.0726 0.3420

. . . . . .

. . . . . .

. . . . . .
1normalized pressure = p/

�
ρf ẌH

�
= β/

�
ρf H

�
2nodal mass = (d)/(c)×Anode × ρf H

φ (y) −→ α (y) =
[Usum (y)]2

Ux (y)
(64)

This proposed modification takes in account displacements in both directions, and will result exactly
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on a product of nodal masses with transverse displacements Ux. Table 8 indicates some sample results
for this second procedure.

Table 8: Added mass calculation procedure – second procedure (including vertical displacements).

(a) (b) (c) (d) (e) (f)

Node Elevation φ (y) Pressure1 (normalized) Nodal tributary area
�
m2
�

Nodal mass2
�
106Ns2/m

�
(m) pnorm Anode Mnode

48 2.0726 0.0313 0.1347 2.0726 0.4350

49 4.1453 0.0606 0.1358 2.0726 0.2264

50 6.2179 0.0868 0.1373 2.0726 0.1598

51 8.2906 0.1107 0.1392 2.0726 0.1271

. . . . . .

. . . . . .

. . . . . .
1normalized pressure = p/

�
ρf ẌH

�
= β/

�
ρf H

�
2nodal mass = (d)/(c)×Anode × ρf H

Frequencies obtained in both procedures are given in Table 9. It should be noticed that results
obtained from the second approach converges to the previously determined coupled frequency. This is
exactly what one should expect, since the added masses act as a replacement of Eq. (62).

Table 9: Results comparison between proposed procedures and reference value.

Procedure first second FEM
(reference)

Frequency
(rad/s)

30.67 32.78 33.25

Relative
error (%)

7.76 1.41 -

It can be noticed that the second approach provides much better results when compared to the first
procedure. In this analysis vertical displacements can highly influence the fundamental frequency of
the system. The differences between the uncoupled and usum curves in Fig. 11 clarify the effect of the
vertical component of displacement. This figure also indicates that the fluid added mass approximates
the deformed shape to the coupled solution result. If no further refinement is required, then the analysis
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could be concluded in this step, with the second procedure added mass solution acting as the coupled
system.

8.1 Comparative studies between analytical and numerical results (forced vibration)

In this analysis results from a coupled and uncoupled finite element models are compared to the
proposed procedure. The main objective is to verify the dynamic response and the stress field in
both approaches during a seismic excitation produced by the north-south component of El Centro
earthquake - 1940 (Fig. 12). An excitation time windows of one second is used to simulate this
horizontal ground displacement.

   
 

 
 
 
 
 
 

  

(a)

 
 
 
 

 
 
  

(b)

Figure 12: Full record (a) and analysis time window (b) of the north south component of El Centro
Earthquake.

The uncoupled equation of motion for this problem is readily obtained with the use of Table 5
parameters. Thus:�

1.0164× 105
�
Ẍ +

�
2.1085× 108

�
X = −üg (t)× 2.4086× 105 (uncoupled) (65)

where üg (t) indicates the horizontal component of ground motion produced by the earthquake. Equa-
tion (65) assumes that only translational contributions are involved in the equilibrium equation.
However, it should be noticed that this assumption is not entirely right. This equation is solved for
the earthquake input using a fourth order Runge-Kutta numerical integration routine. Figure 13a
illustrates the dynamic response for the uncoupled solution. Results indicate that this solution leads
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to slightly higher displacements when compared to a finite element model response on the fundamen-
tal mode shape. Additionally it can be observed on Fig. 13b a comparison between the fundamental
solution with a dynamic response including all mode shapes.

  
 

 
 

 
 
 
 

  

          Analytical ����   FEM (1 mode) 
 

(a)

 
  

 
 
 
 
 

  

          FEM (1 mode) ����   FEM (all modes) 
 

(b)

Figure 13: Comparison between analytical and finite element response for the uncoupled system.
Analytical and finite element fundamental response (a). Finite element fundamental response and
finite element solution including all modes (b).

The above figure indicates that seismic response suffers a significant influence from the fundamen-
tal mode shape. Thus, using a fundamental mode analytical approach, with generalized parameters
obtained from a finite element analysis provides satisfactory results for the uncoupled case. Equation
(65) can be evaluated for other seismic excitations using a numerical integration procedure. This will
provide faster results and will allow the prediction of maximum structural responses.

Effective earthquake forces and stress distribution can be readily evaluated once the displacements
are known. But there is no need for a time-history evaluation, since peak displacements can be noticed
clearly on Fig. 13a. The minimum response value occurs at t = 0.579s. And the maximum response
occurs at t = 0.789s. Figures 14 through 16 illustrate the stress distribution for those peak responses,
including the fundamental and the full mode solutions.

The coupled equation of motion for this problem is readily obtained with the use of Table 5 param-
eters together with the generalized fluid added mass, given by Eq. (62). Thus:�

1.9503× 105
�
Ẍ +

�
2.1085× 108

�
X = −üg (t)× 4.2187× 105 (coupled) (66)

where it should be noticed that both the generalized added mass and the generalized excitation now
have additional terms that represent the coupling effects. The new generalized added mass is given by
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(b) (a) 
Figure 14: Vertical normal stress distribution for finite element fundamental (a) and full mode solution
(b) at t = 0.579s. Uncoupled analysis. Stresses in Pa.

 
 

  
 
 
 

  

          FEM (1 mode) ����   FEM (all modes) 
 

(a)

 
 
   
 
 
 
 
 

  

          FEM (1 mode) ����   FEM (all modes) 
 
(b)

Figure 15: Vertical normal stress distribution at elevations: 20.7264m (a) and 41.4528m (b) at t =
0.579s.

the sum of the structural mass with the fluid added mass. And the generalized excitation is given by
the sum of the previous parameter with the following term:

L̃fluid =
X

Mnode×Ux (y) = 1.8101× 105 Ns2

m
(67)
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(a) (b) 
Figure 16: Vertical normal stress distribution for finite element fundamental (a) and full mode solution
(b) at t = 0.789s. Uncoupled analysis. Stresses in Pa.

which represents the additional mass that participates on the horizontal excitation. Figure 17 illus-
trates the dynamic response for the coupled solution.

  
 

  
 

 
 

  

          Analytical ����   FEM (added mass) 
 (a) 

(a)

 
   
 
 
 

  

(b) 
          FEM (added mass) ����   FEM (coupled) 
 

(b)

Figure 17: Comparison between analytical and finite element response for the coupled system. Ana-
lytical and finite element added mass model fundamental response (a). Finite element added mass
model fundamental response and coupled solution including all modes (b).
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Figure 17 indicates that seismic response suffers a significant influence from the fundamental mode
shape. Thus, using a fundamental mode analytical approach, with generalized parameters obtained
from a finite element analysis provides satisfactory results for the coupled case as well. However, it
should be noticed that these results have an inferior quality when compared to the uncoupled analysis
results.

Effective earthquake forces and stress distribution can be readily evaluated once the displacements
are known. But there is no need for a time-history evaluation, since peak displacements can be noticed
clearly on Fig. 17a. The minimum response value occurs at t = 0.627s. And the maximum response
occurs at t = 0.732s. Figures 18 and 19 illustrate the stress distribution for those peak responses,
including the added mass fundamental and the full mode solutions.

 
 

   
 

 
  

(a) (b) 
Figure 18: Vertical normal stress distribution for finite element added mass fundamental (a) and full
mode solution (b) at t = 0.627s. Coupled analysis. Stresses in Pa.
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(a) (b) 
Figure 19: Vertical normal stress distribution for finite element added mass fundamental (a) and full
mode solution (b) at t = 0.732s. Coupled analysis. Stresses in Pa.

9 Conclusions

A semi-analytical procedure for solution of coupled problems in which a flexible boundary moves into
an acoustic fluid domain was presented. On the mathematical development it was proven that hydrody-
namic pressures acting on the fluid-structure interface are proportional to the boundary acceleration.
This observation provided a link between the structural and fluid systems. A frequency equation was
established, being dependent on both the frequency and mode shape of the coupled system. This
equation leads to a problem with two unknowns and therefore a solution cannot be found without the
previous assumption of one of these parameters. For the mode shape it was adopted the fundamental
deformation, leading to problems where frequencies and responses of the first mode were solved. This
technique was first introduced to simple problems, where generalized parameters could be easily devel-
oped. Complete analytical solutions were found, with results indicating an excellent agreement with
coupled results, which considered all modes of vibration. Coupled frequencies had inferior values when
compared to uncoupled system results. This provided a conclusion that additional fluid masses were
coupled to the structural system. It was also verified that fluid compressibility cannot be neglected on
certain analysis, since this parameter provides an additional fluid mass when compared to an incom-
pressible fluid behavior. Therefore, treating a compressible fluid as incompressible will lead to higher
coupled frequency values and consequently reduced fluid added masses.

On the second part of this paper the procedure was extended to a more complex geometry. The
analysis was developed on a concrete gravity dam, subjected to a seismic excitation. For this analysis
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the full analytical solution was replaced by a semi-analytical procedure, in which the generalized
parameters for the uncoupled analysis were obtained from a finite element model of this geometry.
These parameters were readily substituted in the frequency equation, which provided the coupled
frequency, the added mass and an analytical equation of motion. Results indicated a good agreement
between the semi-analytical frequency and the coupled value. Later these added fluid masses were
introduced on a finite element model and a dynamic analysis considering only the first mode was
performed. Stress distribution on this model was compared to a coupled system including all modes.
It was shown that the first model provides an approximate solution to the dynamic response, which
is highly influenced by the fundamental mode. The great advantage of the added mass procedure is
that there is no need to model the reservoir system. Thus this provides a useful resource for finite
element computer codes without fluid-structure analysis capabilities. However it should also be noticed
that coupled models are more time consuming when compared to uncoupled models. Another great
advantage of this procedure is that it provides an analytical equation of motion once the generalized
parameters are known. This provides a very efficient tool for estimating maximum structural responses
under all sorts of excitations. For simple geometries a full analytical solution can be established,
providing coupled frequencies and responses for a given mode shape. So this procedure could also be
extended to account for participation of higher modes in the structural response.
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