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Abstract

Nowadays a major factor of interest in industries in relationship to development of new techniques for detection
and localization of faults it is the concern with the security of their systems. There is need for supervising
and monitoring in order to detect and correct any fault as fast as possible. It is verified actually, that some
determined parameters of the systems may vary during the process, due to the specific characteristics or the
natural wearing of its components. It is known that even in well-designed systems the occurrence of cracks
in some components can cause economic losses or lead to dangerous situations. With the help of the state
observers methodology one can reconstruct the unmeasured states of the system, since that it is observable,
becoming possible in this way to estimate the measures for locations of difficult access. The technique of state
observers consists in developing a model for the system under analysis and comparing the estimate of outcome
with the measured one, the difference between these two resulting in a residue that is used for analysis. In
this work a bank of signals associated to a model of crack was assembled in order to follow its progress. The
data acquired from the computational simulations in a cantilever beam discretized by means of the technique
of finite elements, had been sufficiently satisfactory, validating the proposed methodology

Keywords: State Observers, faults detection and location, crack model, finite element.

1 Introduction

The increasing technological advances verified during the last decades demand from the machines and
mechanical structures, each time more, larger capacities of producing work under speed of operation
moreover, currently one of the biggest concerns of the industry is how to keep equipment operating
all the time avoiding sudden faulty stops, which explains the constant development of new techniques
of detection and location of faults in mechanical systems submitted the dynamics efforts. With the
purpose of assuring the operation of the mechanical systems with safety, these should be supervised and
as well as monitored for the flaws to be identified following their progress scheduling a maintenance
program for the most appropriate moment, since inherent disturbances to the operation of these
systems can lead to a deterioration of the system performance or even to severity dangerous situations.
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The state observer’s technique consists on a method capable of reconstructing the states in cases
for which their measurement becomes difficult or even impossible. This way, flaws can be detected
in those points even without the knowledge of their measurements, could also monitor them through
those reconstructions of your states. On the other hand, this technique consists on developing a model
for the system under analysis and comparing the output for the observer with the one of the system.

Once identified the flaws the challenge moves on to monitoring the form system in order to analyze
the reliability and the compromising level caused by each identified flaw. It is known that the occur-
rence of cracks in some components can take to not planned stops causing financial damages or even
dangerous situations. This analysis allows to accompany the propagation of the same and through
some pre-defined criteria and to program the maintenance in the system for the most appropriate
moment.

The main focus of the literature revision has been the detection and location of mechanical system
faults. Theories which are related to state observers and crack modeling have been taken in its account.
The state of the art is presented in chronological order and the most significative works are selected.

Luenberger (1964) [1]. Luenberger states that the major part of the theory of modern control is
based on the assumption that the state vector of the system to be controlled is available fro direct
measurement. However, in many practical situations, just few of output database available. The author
shows how the inputs and outputs that are available can be used to build an estimate observer, or
just observer. This work states the state observer theory.

Luenberger (1966). Has shown that for a linear system, its state vector can be approximately recon-
structed by means of an observer designed. The “n” order state vector with “m” independent outputs
can be reconstructed, rebuilding the remaining states from differential conditions. He proved also that
the design of observer with “m” outputs can be reduced a design “m” observer as if they were simple
output subsystems simplifying the observer complexity.

Watanabe and Himmelbleau (1982). The authors have presented a method to detect instruments
faults in nonlinear time dependent processes, including uncertainties such as modeling mistakes,
parameters ambiguity and input and output noise. The main goal of their work has been the develop-
ment of state estimate filters with minimum sensitivity to uncertainties and maximum sensitivity to
instruments faults, like those corresponding to slight deterioration or gradual chances, instead or sud-
den or catastrophic faults. The authors have employed the concept of robust observer, introduced by
Clark (1978), with designing state estimation filters for instruments default detection, robust enough
to with stand the uncertainties. The base for the filters was the separation of the effects of faults from
the uncertainties.

Yuen, M. M. F. (1985). He has considered damaged cantilever beam in the witch the damaged location
dimensions were unknowing. The modeling of the stiffness change has been simulated by a reduction
on the elasticity modulus of the section. In the way, the damaged extension can be related to the
reduction degree. They have proposed a new idea of defect insulation by means of robust observation,
from which a defect diagnosis law is found in such away to monitor the components of a system and
a diagnosis system is design following a systematic procedure. The results from that technique have
shown that robust approach for defective components coupled by unavailable states can be effectively
detected.
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Ge, W. and Fang, C. Z. (1988) [2]. The authors have described a novel conception for the detection
of components under failure by robust observation. Considering a mathematical model corresponding
to “m” components coupled by non-estimated states. They have determined the design of devices
to monitor the operation of those “n” components and faults detection. In the case an observable
system, some first or superior order components can be monitored for the purpose of diagnosis without
information of possible faults modes. Due to the observer robustness, the authors have analyzed some
reactions such as linearization and measurement errors, noise presence, numerical errors, and so on.

Qian (1990). He has established the elements stiffness matrix and motion equation for a cracked
beam. According to the Saint Venant principle, the tension field is disturbed in a region close to
the crack only. The whole element stiffness matrix, with exception to the cracked element, remains
unaffected, obeying to certain constraints in the element size. The energy of the crack is additional
tension is evaluated from fracture mechanics theory and the flexibility coefficient in expressed by an
intensity factor derived from the Castigliano Theorem, on linear elastic field.

Choy et al. (1995). He has presented a methodology based on the vibration theory that can be used
for faults detection in finite element modeling systems, employing beam elements supported by an
elastic foundation. The identification and localization of a fault on the beam are obtained by “m. . . ” a
change in the Young’s modulus for that particular beam element. Assuming that for the original system
the Young’s modulus is well-know the natural frequencies of the system are numerically evaluated by
means of suitable mathematical model, experimentally validated in a crack develops on a certain beam
element. There is an alteration in the system natural frequencies, considering just one faulty element,
the procedure starts up supposing that the crack is located on the first elements. The corresponding
Young’s modulus is adjusted until the first natural frequency matches the measured one. The process
is repeated for each element.

Melo, G. P. (1998) [3]. He has developed a methodology for the detection and localization of faults
in mechanical system employing reduced order state observers. He has shown the way non measured
states can be reconstructed. By “means” of robust state observers, he could provide localization of
faults, with the help of several robust state observer data bank, for each system parameter, he has
proved that it is possible to quantify the system faults. He has preserved computing simulations and
laboratory experiments “validating” the theory.

Cacciola, P., Muscolino, G. (2002). They have employed a cantilever beam, finite element “discretized“
for a crack closing model, considering completely open or closed cracks, in order to describe the
damaged element. Once defined the beam mathematical model, the dynamical outcome is evaluated,
applying a numerical procedure, based on the fundamentals of dynamical changing structural systems.
To the stochastic case, the enhanced perturbation method is modified in order to efficiently solve the
nonlinear stochastic differential equations.

Muscolino G. et al. (2003) [4]. They have used vibration analysis of a cracked beam, by means of
stochastic analysis to detect the presence and localization of has been employed in order to apply the
Monte Carlo method to evaluate in the domain, the statistical high order of the nonlinearities.

Lemos (2004) [5]. He has presented the state observer methodology for detection and location of
faults in rotary systems, taking into account their foundations. According to him, the state observer
methodology is able to reconstruct non measured states or estimate values coming from difficult
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access locations in the system. On fact, those faults can be detected without the need for a direct
measurement.

Fault detection technique employing state observers can reconstruct non measured states or values
of difficult access locations. In that case, faults can be detected and monitored without measurements.
The technique consists on developing a system model and comparing the estimated output with the
measured one. The main idea is to use a crack model to build an observer bank, capable of supervising
the process in which each observer is dedicated to an amount of deep of the crack. Actually a cracked
beam when submitted in an alternate effort or to an initial condition, causes openings and closings
alternately. However, when the crack remains closed, the stiffness does not change. In the present
work, for fault diagnosis, only the case of opening crack has been considered.

2 Analytical model of the cracked beam

The presence of a crack in the beam, according to the principle of Saint Venant, causes a perturbation
of the stress field in the neighborhood of the breach. Such a perturbation is relevant specially when
the crack is open and determines a local reduction of the flexural stiffness. On the other hand, when
the crack is closed the beam acts, approximately, as a homogeneous beam with no crack. According
to author Muscolino the stiffness matrix is the structural property that is most affected from the
breathing of the crack, as damping and mass matrices do not change appreciably during the opening
and closure of the crack.

Undamaged elements of the beam are modeled by Euler type finite elements with two degrees of
freedom (transverse displacement and rotation) at each node. The cracked element will be modeled as
an undamaged element if the crack is closed whereas it exhibits a more flexible behavior if it is open.

2.1 Stiffness matrix

The strain energy of an element without a crack, neglecting shear action, can be written as

W= 1
2EI

1∫

0

(M + Pz)2dz =
1

2EI

(
M2l +

P 2l3

3
+ MPl2

)
(1)

where E is the Young modulus, I the moment of inertia, l the length of the finite element. P and M

are shear and bending action, respectively, synthesizing the presence of the elements situated at the
right of the element, while the behavior of the elements situated at the left of the finite element are
considered as constraints. The calculation of the additional stress energy of a crack has been studied
in fracture mechanics and the flexibility coefficients are expressed by a stress intensity factor in the
linear elastic range using Castigliano’s theorem. The additional energy, in the case of a rectangular
beam of height h and width b, due to the crack can be written as [6]:

W (1) = b

a∫

0

K2
I + K2

II

E′ +
(1 + ν)K2

III

E
da (2)
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where E′ = E for plane stress, E’=E/(1+ν) for plane strain and a is the crack depth. Taking into
account only bending, Eq. (2) leads to

W (1) = b

a∫

0

(KIM + KIP )2 + K2
IIP

E′ da (3)

where
KIM =

6M
bh2

√
πaFI(s); KIP =

3Pl

bh2

√
πaFI(s); KIIP =

P

bh

√
πaFII(s) (4)

are stress intensity factors for opening-type and sliding-type cracks due to M and P , respectively, and

FI(s) =

√
2
πs

tg
(πs

2

)0.923 + 0.199
[
1− sen

(
πs
2

)]4
cos

(
πs
2

)

FII(s) = (3s− 2s2)
1.122− 0.561s + 0.085s2 + 0.18s3

√
1− s

(5)

Being s the ratio between the crack depth and the height of the element (s = a/h). The elements
of the compliance (or flexibility) matrix c(0)

e of the undamaged element can be derived as

c
(o)
ij =

∂2W (o)

∂Pi∂Pj
;⇒ i, j = 1, 2,⇒ P1 = P,⇒ P2 = M (6)

And the elements of the additional flexibility c(1)
e matrix are

c
(1)
ij =

∂2W (1)

∂Pi∂Pj
;⇒ i, j = 1, 2,⇒ P1 = P,⇒ P2 = M (7)

Finally the total flexibility matrix for the element with an open crack is

ce = c(0)
e + c(1)

e (8)

From the equilibrium conditions, the following relationship holds

(
Pi Mi Pi+1 Mi+1

)T

= T
(

Pi+1 Mi+1

)T

(9)

With

T =

[
−1 −l 1 0

0 −1 0 1

]T

(10)

From the principle of virtual work the stiffness matrices of the undamaged and cracked element can
be respectively written as

ku = Tc(0)−1

e TT kc = Tc−1
e TT (11)

Mechanics of Solids in Brazil 2007, Marcílio Alves & H.S. da Costa Mattos (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-30-7



346 G.P. de Melo and M.A. da Cruz Araujo

The stiffness matrix of the undamaged element with rectangular cross-section is that given by
Bernoulli-Euler theory with Hermite shape functions:

ku =




Ebh3

l3
Ebh3

2l2 −Ebh3

l3
Ebh3

2l2

Ebh3

3l −Ebh3

2l2
Ebh3

6l
Ebh3

l3 −Ebh3

2l2

sym Ebh3

3l




(12)

The expression of the stiffness matrix of the cracked element as an explicit function of all the other
parameters is quite involved. However, noting that the matrix can be written as follows:

kc = α1




k11α2 k12α2 k13α2 k14α2

k22α3 k23α2 k24α4

k33α2 k34α2

sym k44α3




(13)

Considering that the crack can reach a depth of up to 40% of the height (a=0.4h), the coefficients
α1, α2, α3and α4 are obtained of the curves below for several values of depth of the crack:

Where r is the ratio between the height and the length of the cracked element (r = h/l).

2.2 Equation of motion

The dynamic response of the beam in the time intervals the crack is closed may be regarded, for
simplicity sake, as that of a beam without crack, because the crack interfaces are completely in contact
with each other. Under the action of the excitation force, crack opening and closure will alternate as
a function of time.

The equations of motion of a cracked beam discretized by Ne finite elements and subjected to an
external excitation vector f(t) can be written as:

Mü(t) + Cu̇(t) + (Ku − γ∆K)u(t) = f(t) (14)

u(0) = u0; u̇(0) = u̇0

in which M is the mass matrix, C is the damping matrix, Ku is the stiffness matrix of the undamaged
beam, u(t) is the displacement vector of the nodal points of order N x 1, being N the degrees of freedom
of the beam. The change in the global stiffness matrix due to the crack is

∆K = Ku −Kc (15)

where Kc is the stiffness matrix of the damaged beam and (In according [6])

γ =

{
1 → when the crack is open

0 → when the crack is closed

}
(16)
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Figure 1: Coefficient value for the evaluation of the stiffness matrix modeling the cracked element
when the crack is open. [6]

We will consider γ=1, because during the period in which the crack stays closed (γ=0) we will
consider that will not be changing of stiffness, therefore at that time there is not fault existence.

3 Fault detection method

The characteristics of reduced-order state observer for detection and location of faults is described
here.

3.1 State observer design and methodology

Design

Many control systems are based on the supposition that the full state vector is available for direct
measurement, but in practice, not always all the variables are available, and those unavailable must
be estimated. In such a way, an observer can be built to estimate them. The schematic is as follows:

The observer is basically a copy of the original system; having the same input and almost the same
differential equation. An extra term compares the actual measured output y(t) to the estimated output
ŷ(t).
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Figure 2: Scheme of a state observer

Control systems using state observers can reconstruct the non-measured states or to estimate the
values of points of difficult access in the system. However, the necessary condition for this reconstruc-
tion is that all the states should be observable (Luenberger, 1964; D’Azzo and Houpis, 1988).

The Fig. 3 shows a logical diagram for faults detection and location in mechanical systems using
the state observers’ technique.

 

 

 

 

 

Figure 3: Observation system.

In the system of Fig. 3, when a certain component begins to fail, the state observer is capable
to detect the influence of this fault quickly, because the observer is quite sensitive to any incipient
irregularity that appears in the system. The state observer is a group of ordinary differential equations
of first order that represents the same response as that of the real system, when it is working property.
Therefore, the idea is to use this effect sensed for the state observer to detect and to locate a possible
fault in a mechanical system.

In this set of observers, the global observer has the role of verifying if the system is working properly
without indications of faults, because this observer uses the same system matrix of the mechanical
system analysis. Thus, the global observer can detect a possible fault or irregularity in the system in
analysis if the system’s response is not coincident with the global observer’s response.
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If a possible fault is detected, the next step would be to locate such fault, and for this reason robust
observers are used. In the robust observers’ assembly are removed of system matrix the parameters
subject to the faults or the parameters subject to a reduction of its values are removed from the system
matrix. This way, the robust observer’s response that approaches to the response of the system with
fault will be the responsible one for the location of this possible fault of the system. A possibility
remains of one or more parameters failing at the same time. In this case, the solution in agreement
with [3] would be to design robust state observers to reach all the parameters subject to failure.

Finally, the Unit of Logical Decision (ULD) collects and analyzes the difference between the real
system and the mounted state observers, in order to detect and to locate faults or irregularities in the
system. This unit also analyzes the progression of possible faults of the system, and activates, when it
becomes necessary, an alarm system, ready to be triggered when a determined variation in a certain
parameter occurs.

Methodology

The Fig. 4 shows a block diagram of the developed methodology for faults detection and location
in mechanical systems using state observer’s technique. The stages of this block diagram start from
finding a mathematical model of the system up to the analysis of the response of the system and of
the observers in the ULD. The commands used in this methodology belong to the package Matlab. In
a general form, the developed methodology is:

• The measurements matrix [Cme] is defined so that the system is observable using this matrix;
• All the eigenvalues of the system in analysis should have their real parts negative to guarantee

stability and fast convergence.
• If the system isn’t observable, new measures should be carried out until the system becomes

observable;
• The matrix of the state observer [L] is obtained using MatLab’s LQR command which is an

implementation of the Ackerman’s formula to calculate optimal gains [L] and to verify the
stability of the system.

4 Numerical simulation

A numerical example is given in this section starting from the developed methodology.
Consider the cantilever beam, shaped for the technique of the finite elements using beam elements,

as it is shown in Figure 5, in which a is the depth of crack located in element 2.
As it was said previously we will consider the condition of open crack (γ =1).

4.1 Initial condition

For this example we consider L=2x10−1m, h=5x10−3m, b=8x10−3m, E=2,07x1011N/m2 and ρ=7850kg/m3.
The simulation was carried through for an initial condition x10(0)=0.05m. The interval of time used
for this simulation 0.4 second, and was 256 sampled points were taken.
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Figure 4: Block diagram of the developed methodology.

 

 

(a)

 

 

 

(b)

Figure 5: Cantilever beam: (a) for numerical application (b)representation for finite element

In the Fig. 6 Graphics 1 to 10 present, the values of displacement {x10(t)} of the system (simulated)
and the values reconstructed {

∧
x
10

(t)} for the state observers against time in seconds.
Firstly, as can be observed in the Graphic 1, both curves are coincident, i.e., the global observer

does not detect any irregularity in the system. In order to simulate a possible fault, a crack with
a=0.25h in the element 2 of the simulated system. Thus, it is observed in Graphic 2 that the curves
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Figure 6: Results obtained to detect faults using state observers (continue).
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are not coincident any longer, i.e., the global observer detects a possible fault in the simulated system.
Once detected the next step is to locate this fault. For this, a set of robust observers to the possible
parameters of system subject to failure has been mounted, as can be seen in Graphics 3 to 10

It can be verified that only in Graphic 7 the curves are coincident, i.e., the robust observer mounted
with a=0.25h was able to locate the fault in the simulated system again.

One sequence of per cent of cracks was analyzed. The values obtained are shown in the Tables 1 and
2 with present the differences of the RMS values between the real system and the global and robust
state observers.

Table 1: Difference in RMS values of x10(t) – Faults is a=0.05h to a=0.20h.

Real System
Without

Fault
( 6=RMS)

Real System
With Fault of

a1=0.05h
( 6=RMS)

Real System
With Fault of

a2=0.10h
(6=RMS)

Real System
With Fault of

a3=0.15h
( 6=RMS)

Real System
With Fault of

a4=0.20h
( 6=RMS)

Gl. Obs. 1.5613E-16 7.9869E-05 1.3476E-05 1.3763E-05 1.5046E-04
Rob.Obs. a1 2.1007E-05 9.0315E-14 5.0054E-05 1.6433E-05 1.5382E-04

Rob.Obs. a2 5.4184E-06 4.8098E-05 3.0070E-14 1.5468E-05 1.2639E-04

Rob.Obs. a3 2.7330E-05 1.4006E-04 7.6797E-05 1.8710E-13 7.2313E-05

Rob.Obs. a4 1.0114E-04 2.8528E-04 2.0352E-04 3.1330E-05 2.2513E-13
Rob.Obs. a5 3.6025E-04 6.4535E-04 5.7639E-04 2.3159E-04 3.2220E-04

Rob.Obs. a6 1.000E-03 1.400E-03 1.300E-03 7.8334E-04 1.000E-03

Rob.Obs. a7 1.300E-03 1.600E-03 1.600E-03 1.000E-03 1.200E-03

Rob.Obs. a8 1.400E-03 1.600E-03 1.700E-03 1.100E-03 1.300E-03
Obs*. is Observer, Glob** is Global, Rob#. is Robust

In the Table 1 and 2, notice how the fault can be detected and located by comparing the global
system without fault with the global observer (second line with the second column of the Table 1
and 2). The order of the difference of RMS value is 10E-16, revealing that the curves are practically
coincident, an indication there is no irregularity in the system. The fault is detected when comparing
the real system with fault to the global observer, the RMS difference is now 10E-05, showing that the
system has some irregularity (see second line with third column of Table 1). In order to locate such
irregularity, the global fault system is compared with the robust observer dedicated to an each fault
parameter from this comparison the differences in RMS values decrease to the order of 10E-14.
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Table 2: Difference in RMS values of x10(t) – Faults is a=0.25h to a=0.40h.

Real System
Without

Fault
(6=RMS)

Real System
With Fault of

a5=0.25h
( 6=RMS)

Real System
With Fault of

a6=0.30h
( 6=RMS)

Real System
With Fault of

a7=0.35h
(6=RMS)

Real System
With Fault of

a8=0.40h
( 6=RMS)

Gl. Obs. 1.5613E-16 7.4723E-05 2.0913E-04 3.0395E-004 3.5775E-004
Rob.Obs. a1 2.1007E-05 5.1909E-05 2.2406E-04 3.1300E-04 3.5299E-04

Rob.Obs. a2 5.4184E-06 1.4100E-04 6.3456E-05 2.4925E-05 4.4674E-05

Rob.Obs. a3 2.7330E-05 6.2623E-05 1.6469E-04 2.4795E-04 3.0127E-04

Rob.Obs. a4 1.0114E-04 8.5791E-05 1.7900E-04 2.7948E-04 3.6387E-04

Rob.Obs. a5 3.6025E-04 5.2420E-14 5.2059E-05 3.6954E-05 4.1993E-06

Rob.Obs. a6 1.000E-03 4.5338E-04 5.1662E-14 5.2371E-05 3.5903E-05

Rob.Obs. a7 1.300E-03 7.4266E-04 1.2233E-04 7.3944E-14 7.7075E-05

Rob.Obs. a8 1.400E-03 9.3217E-04 3.0882E-04 1.6577E-04 1.1146E-13
Obs*. is Observer, Glob** is Global, Rob#. is Robust

5 Experimental data

With the purpose to validate the methodology, in the Vibrations Laboratory from Mechanical Engi-
neering Department, a cantilever has been assembled, using a steel carbon bar rigid. An impulsive
excitation has been selected to analyze the system transient behavior.

Materials and equipments used

• Inertial table to support the assembly;
• Steel-Carbon bar with dimensions: 0,2 x 0,0172 x 0,0125 m e 0,2 x 0,0155 x 0,0155 m; E=2,07x1011m

e ρ=7850 kg/m3.
• Steel-Carbon base;
• Data Acquisition system A/D Iotech DaqBook/112, DBK 17 with 4-input channel adapter;
• Signal Conditioner/Amplifier Nexus Conditioning Amplifier Z6 –Bruel&Kjaer with 4-channel

input and 4-channel output;
• Piezoeletric Accelerometer Bruel & Kjaer (Sensitivity 0,979 pC/ms−2 );
• PCB type Impulsive Force Impact Hammer PCB 086C04 (1.2 mV/N);

The experimental cantilever (figure 8) has dimensions: L = 2x10−1m, b = 17,2x10−3m, h =
12,5x10−3m, E = 2,07x1011m and ρ = 7850 kg/m3.
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Figure 7: Cantilever with 10 d.o.f.

 

 

 

 
Figure 8: Experimental cantilever.

The system has been excited with an impulsive force with 2.5 m/s initial velocity. The velocity
value has been determined through a unit conversion, taking into account the impedance hammer
sensitivity and the impact duration. In the simulated system, the structural damping, experimentally
verified, has been considered, as previously described. 2048 points have been acquired for experimental
velocity signal at node 4 during 0.4 seconds. In order to better validate the method, the procedure
has been repeated for several depth cracks.

In the table 3 the detection and location of the faults can be noticed, by comparing the non
fault global system with the global observer. The 10E-5 RMS value difference shows that the curves
practically coincide, that is, the values of the real system without fault are the equal the non fault
global observer.

Once the fault inserted, it is detected by the robust observers. As an example, in the third low and
third column there can be noticed a 10% fault detection. That means the crack has reached 10% of
the total depth. In sequence, faults varying 10% up to 40% on 10% varying depth have been inserted.
The effectiveness of the bank observers can be noticed from the data in Table 3.

Mechanics of Solids in Brazil 2007, Marcílio Alves & H.S. da Costa Mattos (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-30-7



Using fault models for crack detection in continuous systems 355

Table 3: Difference in RMS values of x4(t) – Faults is a=0.25h to a=0.40h

Real system
without fault

(6=RMS)

Real System
With Fault of

a2=0.10h
( 6=RMS)

Real System
With Fault of

a4=0.20h
( 6=RMS)

Real System
With Fault of

a6=0.30h
(6=RMS)

Real System
With Fault of

a8=0.40h
( 6=RMS)

Obs*. Gl**. 6.0176e-05 8.8519e-03 1.5354e-02 4.6255e-03 2.8046e-02
Obs.Rob#a1 4.7437e-03 5.7148e-03 8.3510e-03 3.2281e-03 1.0696e-02

Obs.Rob. a2 2.0251e-03 2.3036e-05 1.1542e-02 2.1987e-03 1.9611e-02

Obs.Rob. a3 2.4302e-03 8.9387e-03 1.4613e-02 1.8467e-03 2.3427e-02

Obs.Rob. a4 6.7278e-03 6.6312e-03 6.8883e-05 4.4834e-03 2.2055e-02

Obs.Rob. a5 9.0707e-03 4.2815e-03 1.4004e-02 4.5640e-03 2.2674e-02

Obs.Rob. a6 9.5672e-03 2.4449e-03 1.1638e-02 6.6661e-05 2.2539e-02

Obs.Rob. a7 1.1323e-02 8.2965e-03 1.0064e-02 3.1804e-03 2.2391e-02

Obs.Rob. a8 1.5404e-02 3.0214e-03 5.8309e-03 1.4956e-03 7.7216e-05
Obs*. is Observer, Glob** is Global, Rob#. is Robust.

6 Conclusion

In this paper a methodology has been developed using the state observer technique for the detection
and location of a crack in a cantilever beam. The technique employed can reconstruct non measured
states or to estimate the values of points of difficult access in a system, detecting faults in those points
without the knowledge of measured data, monitoring them through the reconstructions of its states.
It should be stressed that is satisfied if only if the analyzed system is observable using the number
of measurements is satisfied carried out. In case this does not happen, new measurement should be
carried out until the system becomes observable. Besides, the observers’ eigenvalues should be selected
to be a little at least to the left in the complex plan of the eigenvalues of the observed system in order
to guarantee the stability and the fast convergence of the process. The numerical simulation has shown
the efficiency of this technique, presenting a methodology for the detection and location of a crack
in a cantilever beam using state observers, which obtaining quite satisfactory results, confirming the
reliability of this methodology. This way, this methodology can be implemented for several types of
mechanical systems. With the experimental results, we could see in Laboratory the efficiency of this
technique.
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