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Abstract

The objective of this work is to present the implementation of topological derivative concepts in a standard
BEM formulation. The topological derivative is evaluated at internal points, and those showing the lowest
values are used to remove material by opening a circular cavity. Hence, as the iterative processes evolutes, the
original domain has holes progressively punched out, until a given stop criteria is achieved. At this point, the
optimal topology is expected. Several benchmarks of two-dimensional elasticity are presented and analyzed.
Because the BEM does not employ domain meshes in linear cases, the resulting topologies are completely
devoid of intermediary material densities. The results obtained showed good agreement with previous avail-
able solutions, and demanded comparatively low computational cost. The results prove that the formulation
generates optimal topologies, eliminates some typical drawbacks of homogenization methods, and has potential
to be extended to other classes of problems. More important, it opens an interesting field of investigation for
integral equation methods, so far accomplished only within the finite element methods context.

1 Introduction

Topology optimization has been a major research subject in many engineering fields during the last
decades, and a number of numerical methods has emerged to perform this type of computational
design task efficiently. Among these, homogenization methods are possibly the most used approaches
for topology optimization of structures. Since the early work of [1] these techniques and their variants
have been successfully used in many structural optimization problems [2]. Because the technique deals
with variable material densities, the finite element method (FEM) has became the natural choice for
the numerical solution of the equations. Additionally, the technique is able to generate globally optimal
solutions, i.e. microstrutured designs. Although strictly correct from the mathematical standpoint, this
type of solution often fails to generate engineering designs in a straightforward manner. In order to
render a 0-1 (void-material) solution, suboptimal microstructures with penalization like SIMP are used
to avoid large areas with intermediate results (composite materials). Since the material distribution is
related to the finite element mesh, results obtained through homogenization methods generally suffer
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from mesh dependency. Another major drawback of the technique arises when some types of density
gradient control are applied, possibly generating checkerboard instabilities that must be avoided in
order to attain feasible designs. Another alternative method which has also been under development
during the last years are the topological derivative (TD) or topological-shape sensitivity methods [3–
5]. This family of methods aims the elimination of mesh dependency and numerical instabilities, two
common drawbacks of homogenization methods.

Most of the research on topology optimization has been based on FEM methods (see, for instance,
[6]). The objective of the present work is to apply a recently developed TD approach with boundary
element methods (BEM). A previous methodology developed for heat transfer problems (Marczak,
2005) is extended to elasticity problems. Since the BEM does not need domain mesh, its use with
TD methods renders a fully 0-1 approach, thus avoiding intermediary material densities and the
associated numerical drawbacks. First, a review of the TD formulation adopted herein is addressed,
which is particularized for 2D elasticity. Next, a numerical methodology is devised to carry out the
computational design by an iterative BEM procedure. A number of examples are solved with the
proposed formulation and the results are compared with available solutions.

2 A short review of topological-shape sensitivity for 2D elasticity equation

The idea behind topology derivative is the evaluation of a cost function sensitivity to the creation of a
new cavity/hole. Wherever this sensibility is low enough the material can be progressively eliminated.

The original concept of topological derivative is related to the sensitivity of a given cost function ø
when the topology of the analysis domain Ω is changed. The local value of the topological derivative
at a point x̂ for this case evaluated by:

D∗
T (x̂) = lim

ε→0

ψ(Ωε)− ψ(Ω)
f(ε)

(1)

where ψ(Ω) and ψ(Ωε) are the cost function evaluated for the original and the changed domain,
respectively, and f is a regularizing, problem dependent, function. The major drawback of this concept
is that it is not possible to establish an isomorphism between domains with different topologies, making
the evaluation of Eq.(1) rather difficult or impossible.

Feijoo et. al [5] and Novotny et. al [7] circumvented this problem introducing the mathematical idea
that the creation of a hole can be accomplished by simply perturbing an existing one, whose radius
tends to zero (Fig. 1). Now both domains have the same topology and it is possible to establish a
mapping between each other:

DT (x̂) = lim
ε→0
δε→0

ψ(Ωε+δε)− ψ(Ω)
f(ε + δε)− f(ε)

(2)

where δε is a small perturbation on the hole’s radius. It is important to note that Eq.(2) is formally
rendering a shape sensitivity character to the original expression, but it can be proven that the Eqs.(1)
and (2) are equivalent. The evaluation of DT is, however, much easier than its original counterpart
D∗

T .
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In the present work, the interest rests on the evaluation of DT for problems governed by the
elasticity operator. Following the work of Novotny et. al [7], the topological derivative equations for
linear elasticity will be reviewed. The direct problem is stated as:

Find: {uε |divσε = b} on Ωε (3a)

Subjected to:





uε = ū on Γu

σεn = t̄ on Γt

σεn = 0 on Γε

(3b)

εΛ∂

εΛ
x̂ε

εΓ

εΩ

 
 
 

(a)

x̂ε

δε+εΓ

δε+εΩ

δε+εΛ∂

εδ+εΛ

δε+ε

 
 
 
 
 

(b)

Figure 1: The modified concept of topological derivative. (a) Original domain. (b) Perturbed domain.

Let a general form for cost function be written as total strain energy function:

Ψ(uτ ) =
1
2

∫

Ωτ

COτuτ · OτuτdΩτ −
∫

Ωτ

b · uτdΩτ −
∫

Γt

q̄ · uτdΓτ

=
1
2
aτ (uτ ,uτ )− lτ (uτ ) (4)

where τ is the perturbation parameter associated to the shape change velocity (i.e. xτ (x) = x+ τv(x)
). The sensibility of the cost function with respect to τ can be obtained from the Gâteaux derivative
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of the perturbed configuration given by Eq.(4):

d

dτ
Ψ(Ωτ )τ=0 = lim

τ→0

Ψ(Ωτ )−Ψ
(
Ωτ |τ=0

)

τ
= 0 on ∂Γε (5)

After an intensive analytical work, the topological derivative results, in absence of body loads:

DT (x̂) = − lim
ε→0

1
f ′ (ε)

∫

Γε

1
2ρE

σtt
ε dΓε

Using an asymptotic analysis of the solution uε, the following expression is found:

DT (x̂) =
2

1 + ν
σ · ε+

3ν − 1
2(1− ν2)

trσtrε

which can be particularized for plane strain problems as

DT (x̂) =
2

(1 + ν)(1− 2ν)
σ · ε +

(1− ν)(4ν − 1)
2(1− 2ν)

trσtrε (6)

A similar expression can be derived for the plane stress case.

3 Numerical methodology

In order to evaluate Eq.(6), the BEM was used in its direct version [8, 9]. Since the evaluation of
physical variables on internal points with the BEM is a post-processing step, the recovery of local
values for DT can be easily implemented. Furthermore, because the BEM shows better accuracy for
the evaluation of boundary variables than other popular methods like the FEM, it is expected a good
performance of the approach for boundary points (which is an important issue in shape changes).

1. The optimization process is carried in four basic steps (see Fig. 2):
2. The standard BE problem is solved, and the variables are evaluated on a suitable grid of interior

points.
3. The points with the lowest values of DT are selected.
4. Holes are created by punching out disks of material centered on the previously selected points.
5. Check stopping criteria, rebuild the mesh, and return to step 1, if necessary.
At this point, the desired topology is expected. It is important to stress that, strictly speaking, the

punching strategy here adopted is a type of hard-kill method for material elimination. This can be an
issue in some non-convex problems, when material creation (filling) may occur simultaneously with
material elimination.

It is worth to comment some aspects regarding the step 2. A common drawback in many shape and
topology optimization methods is the progressive lost of symmetry in originally symmetric problems.
This is related to the numerical evaluation of sensitivities, which are always prone to round-off and
truncation errors. The material removal strategy also has influence on the final results, since symmetric
topologies demand symmetric elimination of material. And of course the removal rate has a heavy
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Figure 2: BEM iterative procedure for material removal.

influence on the computational cost of the analysis. These issues were faced in the early stages of the
present work [10], and three strategies were successively devised to overcome it:

• Method A: Creation of a single hole per iteration: This is a very crude form of material removal,
and computationally very inefficient. The point with the lowest DT value is used to create the
hole. Besides being unable to create more than one hole at each iteration (with obvious lost of
symmetry), a large number of iterations is necessary to achieve a given solution.

• Method B: Creation of Nh holes per iteration: This is a natural improvement over method A,
where a preset number of holes is allowed to be created at each iteration. It is computationally
more efficient that its predecessor, but there is no simple way to guarantee symmetric solutions.

• Method C: It is a cut-off method: This method was devised to try to remove larger areas of
material in each iteration. The ideal solution would be to remove all areas inside the isolines at
a given level of topological derivative, for each iteration. A simpler shortcut is to define a cut-off
value:

Dcutoff = min
(
Di

T

)
+ ρ

[
max

(
Di

T

)−min
(
Di

T

)]
(7)

where i =1..number of sampling points (internal and boundary points). Therefore, all points
with DT ≤ Dcutoff are used to remove material.
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After a number of preliminary tests, the methods B and C were found to be the best ones, and it
was used throughout this work. By selecting suitable values of ρ, the rate of material removal can be
controlled, provided it is not very large. Values in range 0.2% ≤ ρ ≤ 5% proved to be sufficient for
most applications.

4 Numerical results

This section presents a number of cases analyzed using the proposed formulation. These are very
preliminary results, used to test the formulation. Traction free boundary conditions were employed
on the holes. In all cases, the total potential energy was used as the cost function. The total amount
of material removed was checked at the end of each iteration and compared to a reference value until
the desired volume is achieved. All cases used linear discontinuous boundary elements integrated with
8 Gauss points. The regularly spaced grid of internal points was generated automatically, taking into
account the radius of the holes to be created during each iteration. The radius was taken as a fraction
of a reference dimension of the domain (r = αlref). They may vary in order to accelerate or decelerate
the material removal rate, but usually lref = min(H, L) was adopted, where H and L are the height
and length of the domain. The material volume is to be minimized in all cases. The current area of the
domain (Af ) was checked at the end of each iteration until a reference value is achieved (Af = βA0,
where A0 is the initial value). The examples shown in this section employed circular holes discretized
with six boundary elements.

4.1 Benchmark 1 - Fixed support

In this case a square domain has its left edge clamped and is subjected to a load on its upper right
corner (Fig. 3). Holes with fixed radius were used throughout the process (r = 0.025a).

 

a

a

 
 
 Figure 3: Illustration of benchmark 1.

The evolution history is shown in Fig. 4, for Nh = 4. The process was halted when Af = 0.4A0
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was reached. Figure 5 shows the results obtained for this case when Nh = 8. Both cases delivered the
same topologies, but evidently the solution was much faster in the latter one.

 

Iteration 0 Iteration 40 Iteration 20 

Iteration 60 Iteration 88 Iteration 80  
 
 Figure 4: Optimization history of benchmark 1 – Method B with Nh = 4.

4.2 Benchmark 2 - Cantilever beam

In this case rectangular cantilever structure has its left edge clamped and is subjected to a load on its
upper right corner (Fig. 6). Three different solution strategies were used to solve this problem.

The first solution used r = 0.04a and method C with a fixed value of ρ in Eq.(7). The evolution
history is shown in Fig. 7. Because a larger hole was used, the algorithm eliminated material very
fastly, resulting a slender design with Af = 0.15A0 after 57 iterations.

The second solution used r = 0.03a and method B with Nh = 12. As shown by the evolution history
in Fig. 8, in this case the smaller radius of the holes and the more controlled material removal provided
by method B allowed the formation of internal reinforcement bars, very similar to those also found in
FEM homogenization solutions (Bendsøe 1995)(Bendsøe & Sigmund, 2003). The process was halted
in the 40th iteration, when Af = 0.35A0.
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Iteration 10 

Iteration 30 

Iteration 20 

Iteration 40 Iteration 44 

Iteration 0 

 
 
 Figure 5: Optimization history of benchmark 1 – Method B with Nh = 8.

 

a

b

 
 
Figure 6: Illustration of benchmark 2.

The third solution repeated the last one, but using a slightly more dense internal points grid. As
a consequence, the DT sampling space was enriched and a more refined reinforcement pattern was
found (Fig. 9).
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Iteration 0 Iteration 10 

Iteration 20 Iteration 30 

Iteration 40 Iteration 50 

Iteration 57  
 

Figure 7: Optimization history of benchmark 2 - Method C with r = 0.04a.

The final design took 32 iterations to reach Af = 0.45A0. This dependence is deeply rooted in the
existence of a global optimum, which is microstructured. As the internal mesh is refined (and the
holes radius decreased) the likelihood of finding a microstructured solution also increases. This is in
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perfect agreement with similar results obtained with the FEM [11]. However, the BEM has the clear
advantage of not dealing with intermediary material densities.

 

Iteration 0 Iteration 10 

Iteration 19 Iteration 25 

Iteration 30 Iteration 35 

Iteration 40  
 

Figure 8: Optimization history of benchmark 2 - Method B with r = 0.04a and Nh = 12.
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Iteration 0 Iteration 05 

Iteration 10 Iteration 15 

Iteration 23 Iteration 29 

Iteration 32  
 

Figure 9: Optimization history of benchmark 2 - Method B with r = 0.03a and Nh = 12.

4.3 Benchmark 3 - Michell truss

In this case refers to the popular Michell truss [12, 13]. The geometry, boundary conditions and loading
for this benchmark are depicted in Fig. 10a. Two possible optimal solutions are shown in Fig. 10b.
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The theoretical solutions of Fig. 10b have their configurations dependent on the number of bars used.

 
 

(a)
 

 (b)

Figure 10: (a) Illustration of benchmark 3. (b) Theoretical optimal solution (Michell truss).

This case was initially analyzed with the proposed formulation using method B with r = 0.04a and
Nh = 2. These parameters were found to be rather exaggerated to successfully generate a genuine
Michell truss, as shown in the evolution history of Fig. 11, but the algorithm was able to detect
their presence during intermediary iterations. This benchmark was reanalyzed using method B with
r = 0.02a and Nh = 8. The corresponding optimization history is depicted in Fig. 12. Here, the
reinforcements are more clearly generated, resembling more closely the structure of Fig. 10b. Evidently,
the use of smaller holes leads to a more representative design.

5 Conclusions

The present work introduced a topology optimization strategy for 2D elasticity problems using a
topological derivative approach and the boundary element method. The relevant expressions for topo-
logical derivative evaluations are reviewed, aiming their implementation for problems governed by
plane stress or plane strain equations. The formulation is derived by introducing a specially devised
iterative material removal procedure in a BEM framework. Some classical benchmark cases are solved
in order to verify the feasibility of the proposed procedure. Because the BEM does not employ domain
meshes in linear cases, the resulting topologies are completely devoid of intermediary material den-
sities. The obtained results showed good agreement with previous available solutions, and demanded
comparatively low computational cost.

It is important to mention that the topological derivate approach presented herein is not a well
posed problem from the optimization point of view. The cost function (potential energy density)
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Iteration 0 Iteration 10 

Iteration 25 Iteration 35 

Iteration 23 Iteration 29 

Iteration 32  
 

Figure 11: Optimization history of benchmark 3 - Method B with r = 0.04a and Nh = 2.
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Iteration 0 Iteration 10 

Iteration 20 Iteration 30 

Iteration 39 Iteration 48  

Figure 12: Optimization history of benchmark 3 - Method B with r = 0.02a and Nh = 8.

is not explicitly given, and extensions of the formulation to other types cost function will demand
elaborate analytical derivations. The imposition of constraints also deserves further investigation.

The presented results proved that the formulation generates optimal topologies, eliminates some
typical drawbacks of homogenization methods, and has potential to be extended to other classes
of problems like plates and 3D elasticity. The simplicity of the expressions used to estimate the
sensitivities makes the extension of the method to other types of PDEs rather straightforward, the
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difference being only in the type of physical variables and sensitivities. More important, it opens an
interesting field of investigation for integral equation methods, so far accomplished only within the
finite element methods context.
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