
High-order finite elements applied to structural elastic
problems

Marco L. Bittencourt, Thais G. Vazquez
Departamento de Projeto Mecânico, Faculdade de Engenharia Mecânica,

Universidade Estadual de Campinas, Campinas, SP – Brazil

Alberto Costa Nogueira Jr.
Thorus Scisoft Tecnologia da Informação Ltda., Campinas, SP – Brazil

Abstract

The main purpose of this paper is to demonstrate the applicability of the high-order Finite Element Methods
for non-linear elastic problems using 3D non-structured meshes. Two finite element bases are presented and
compared in terms of the conditioning numbers of the local matrices. A Numerical example is used to validate
the application of the Spectral/hp FEM in the context of structural mechanics.
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1 Introduction

The quality of the approximation of Boundary Value Problems (BVP) obtained from the application
of the Finite Element Method (FEM) depends on the size and shape of the elements, the properties
of the approximation space and the regularity of the solution [1, 2]. From the computational point of
view, the choice of the basis for the approximation space influences the stability and efficiency of the
numerical procedures used to calculate the approximated solution. In general the finite element basis
consist of piecewise polynomial functions defined on the elements of the partition which discretizes
the problem domain.

Specifically, the p-version of the FEM has the following main features [3, 4]: high-order numerical
integration; numerical differentiation; appropriate shape functions; geometric mapping for arbitrary
domains; global C0 inter-element continuity; degrees of freedom numbering; application of boundary
conditions; and post-processing of results. The p-shape functions are associated to the topological
entities (vertex, edge, face and body) of the elements. In general, these functions are built from
one-dimensional Legendre and Chebyshev polynomials [3, 5, 6]. Hierarchical or modal p-basis are char-
acterized by the following properties [4]: vertex modes have one magnitude at one vertex and are
zero at all other vertices; edges modes have magnitude along one edge and are zero at all other edges
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and vertices; face modes have magnitude along one face but are zero along all other faces, edges and
vertices. Hierarchy means that high order expansion sets Xp+1 contains the terms of the lower order
expansion sets Xp, i.e., Xp ⊂ Xp+1. A nodal basis denotes a non-hierarchical expansion which is
associated with a set of nodal points and generally based upon Lagrange polynomials.

Many p-shape functions have been presented in the literature [3, 7–16].
Sherwin & Karniadakis [12] presented hierarchical shape functions for triangles and tetrahedra

based on collapsed cartesian coordinates, tensorial product, Jacobi orthogonal polynomials and exact
numerical integration using tensor product of one-dimensional Gauss-Jacobi quadrature [4]. The col-
lapsed coordinate systems for triangles and tetrahedra are obtained from the cartesian coordinate
systems defined on quadrilaterals and hexahedra, respectively.

A fully tensorial-based procedure to construct nodal and modal shape functions for triangles and
tetrahedral in barycentric coordinates was presented in [16]. Due to the use of tensorial product, the
modal functions have a natural global C0 inter-element continuity. A unified approach to construct h-
and p-shape functions for quadrilaterals, hexahedral, triangles and tetrahedral based on the tensorial
product of one-dimensional bases is in [17]. The approach uses indices to denote the one-dimensional
polynomials in each tensorization direction. The appropriate manipulation of the indices allows the
construction of hierarchical or non-hierarchial and inter-element continuous or non-continuous bases. In
addition, a new tensorial basis for triangles is defined aiming to improve the sparsity profiles of the local
finite element matrices. The use of tensorial based construction has advantages as the manipulation
of only one-dimensional polynomials and their derivatives, better computational performance and
simplified implementation of parallel procedures and use of one-dimensional integration rules [16].

The purpose of this paper is to compare the Spectral/hp FEM [4], originally developed to CFD,
and the shape functions developed [17] for the Laplace operator. After that the Spectral/hp FEM
is applied to a non-linear elastic problem. The paper is organized as follows. First brief reviews of
the Spectral/hp FEM and the shape functions given [17] are presented. Comparisons for the Laplace
operator is then considered. Finally, results obtained from the application to Spectral/hp FEM to a
non-linear elasticity problems are presented.

2 The Spectral/hp Finite Element Method

The Spectral/hp FEM uses collapsed coordinate systems to define the shape functions for triangles and
tetrahedra. Figure 1 illustrates the procedure to obtain the triangle T 2 = {(ξ, η) | −1 ≤ ξ, η; ξ+η ≤ 0}
from the square R2 = {(a, b) | −1 ≤ a, b ≤ 1}. This transformation allows the use of tensorial
product to write the shape functions for triangles. Due to the rational nature of the transformation
(a, b) 7−→ (ξ, η) ( a = 1+ξ

1−η − 1), additional terms are included in the local expressions of the shape
functions in the coordinates (a, b) to obtain polynomial basis in the local triangular and quadrangular
domains. Figure 2 shows the analogous 3-steps transformation to obtain the local tetrahedron T 3 from
the hexahedron R3 [4, 12].

Local and global operations are defined for the Spectral/hp FEM. The local operations are related
to the numerical integration, numerical differentiation and the local-global mapping of the shape
functions. Connectivity manipulation and degree of freedom numbering are the main global operations.
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Figure 1: Mapping between quadrilateral and triangular domains [12].

Figure 2: Mapping between hexahedron and tetrahedron domains [12].

Aspects of the numerical integration and differentiation are discussed here briefly. Detailed analysis of
the local and global operations, and the appropriate application of boundary conditions, are presented
in [4].
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The numerical integration in the tetrahedron domain T 3 = {(ξ, η, ζ) | −1 ≤ ξ, η, ζ; ξ + η + ζ ≤ −1}
uses the collapsed transformation illustrated in Figure 2 which are expressed by the following relations

a = 2
(1 + ξ)

(−η − ζ)
− 1, b = 2

(1 + η)
(1− ζ)

− 1, c = ζ, (1)

For the linear and non-linear elasticity problems, the following general expression has to be inte-
grated

∫

T 3
u(ξ, η, ζ)dξdηdζ =

∫ 1

−1

∫ 1

−1

∫ 1

−1

u(a, b, c)Jdadbdc , (2)

where the Jacobian J of the R3 −→ T 3 transformation is given by

J =
∂(ξ, η, ζ)
∂(a, b, c)

=
(

1− b

2

)(
1− c

2

)2

. (3)

The numerical integration of (2) from the tensorial product of one-dimensional quadrature rules is

∫ 1

−1

∫ 1

−1

∫ 1

−1

u(a, b, c)
(

1− b

2

)(
1− c

2

)2

dadbdc

=
Q1−1∑

i=0

wi





Q2−1∑

j=0

wj

{
Q3−1∑

k=0

wku(ai, bj , ck)
(

1− bj

2

)(
1− ck

2

)2
}


 , (4)

where ai, bj and ck are tensorial-based coordinates of the Q1, Q2 and Q3 quadrature points in each
spatial direction a, b and c, respectively; wi, wj and wk are the respective weights of the Gauss
quadrature.

The Gauss-Jacobi quadrature is defined by [4]

∫ 1

−1

(1− z)α(1 + z)βf(z)dz =
Q−1∑

i=0

wα,β
i f(zα,β

i ), (5)

where wα,β
i and zα,β

i are the weights and coordinates of the integration points for an appropriate selec-
tion of the weights α and β of the Jacobi polynomial. For α = β = 0, the Gauss-Legendre quadrature
is obtained. The boundary points of the domain may be included in the numerical integration when
using the Gauss-Jacobi quadrature with Lobatto and Radau distributions of points [4].

Based on the previous definition, the number of integration points for the consistent integration of
(4) may be reduced with the inclusion of the Jacobian terms in the weights. For that purpose, (α = 0,
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β = 0), (α = 1, β = 0) and (α = 2, β = 0) are selected, respectively, in the directions a, b and c. The
integration on T 3 given in (4) may be written as

∫ 1

−1

∫ 1

−1

∫ 1

−1

u(a, b, c)
(

1− b

2

)(
1− c

2

)2

dadbdc

=
Q1−1∑

i=0

w0,0
i





Q2−1∑

j=0

ŵ1,0
j

{
Q3−1∑

k=0

ŵ2,0
k u(a0,0

i , b1,0
j , c2,0

k )

}

 , (6)

where

ŵ1,0
j =

w1,0
j

2
and ŵ2,0

k =
w2,0

k

4
. (7)

The Gauss-Radau distribution is used in the η, ζ directions while the Gauss-Lobatto points are
considered for the ξ direction as illustrated in Figure 3. This selection avoids multiple points on the
vertices (ξ = −1, η = −1, ζ = 1) and (ξ = −1, η = 1, ζ = 1) and along the edge that connects these
vertices. Therefore, the calculation on the singular points of the collapsed transformation is avoided.
Although numerical perturbations would be expected when using singular integration points, [4] gave
a theoretical proof demonstrating the boundness of the collapsed transformation over the singular
points.
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Figure 3: Quadrature points for the local tetrahedron T 3 with Q1 = Q2 = Q3 = 7 and Gauss-Lobatto
points in the ξ-direction and Gauss-Radau points in the η and ζ-directions [4].

The differential operators of the linear and non-linear elasticity problems are applied to the shape
functions of the approximation space and evaluated on the integration points for each finite element of
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the mesh. The collocation differentiation may be used to calculate the derivatives of the shape functions
on the integration points [4]. It is based on the representation of arbitrary polynomial functions by
Lagrange polynomials defined on the quadrature coordinates. The representation is a simple change
of basis for the same polynomial space. Based on that, the local polynomial approximation for a
one-dimensional function u(ξ) is written as

u(ξ) =
P1∑

p=0

ûpφp(ξ) =
P1∑

p=0

uphp(ξ) (8)

where φp(ξ) are the interpolation functions of order ≤ P1, hp(ξ) are the Lagrange polynomials defined
on the P1 +1 integration points and ûp and up are the coefficients of the approximation in the original
and transformed basis, respectively. Due to the collocation property of the Lagrange polynomials (i.e.,
hi(ξj) = δij), the coefficients up are the values of the approximated function on the integration points,
i.e., up = u(ξp). Therefore, it is possible to express the derivative of the approximated function as

∂u

∂ξ
(ξ) =

P1∑
p=0

up
∂hp

∂ξ
(ξ) =

P1∑
p=0

u(ξp)
∂hp

∂ξ
(ξ). (9)

For the reference element T 3, which is mapped from the hexahedron R3, the polynomial expansion
of the function u(a, b, c) in terms of Lagrange polynomials in the tensorial coordinates a, b and c is

u(a, b, c) =
P1,P2,P3∑
p,q,r=0

ûpqrψpqr(a, b, c) =
P1∑

p=0

P2∑
q=0

P3∑
r=0

upqrhp(a)hq(b)hr(c), (10)

where ψpqr(a, b, c) = φpqr(ξ, η, ζ) are the basis functions represented in the tensorized space (a, b, c)
and hj (for j = p, q, r) are the Lagrange polynomials of order Pi (i = 1, 2, 3).

Analogously to equation (9), the partial derivatives of the approximated function are

∂u

∂a
(a, b, c) =

P1∑
p=0

P2∑
q=0

P3∑
r=0

upqr
∂hp(a)

∂a
hq(b)hr(c), (11)

∂u

∂b
(a, b, c) =

P1∑
p=0

P2∑
q=0

P3∑
r=0

upqrhp(a)
∂hq(b)

∂b
hr(c), (12)

∂u

∂c
(a, b, c) =

P1∑
p=0

P2∑
q=0

P3∑
r=0

upqrhp(a)hq(b)
∂hr(c)

∂c
. (13)
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The evaluation of the previous expressions on the integration points using the collocation property of
the Lagrange polynomials gives

∂u

∂a
(ai, bj , ck) =

P1∑
p=0

upjk
∂hp(a)

∂a

∣∣∣∣
ai

, (14)

∂u

∂b
(ai, bj , ck) =

P2∑
q=0

uiqk
∂hq(b)

∂b

∣∣∣∣
bj

, (15)

∂u

∂c
(ai, bj , ck) =

P3∑
r=0

uijr
∂hr(c)

∂c

∣∣∣∣
ck

. (16)

The procedures for the collocation differentiation, which result from the evaluation of the derivatives
of Lagrange polynomials, are discussed in [4] and based on the distribution of points for the Gauss-
Jacobi, Gauss-Legendre, Gauss-Radau and Gauss-Lobatto quadratures.

From expressions (14) to (16), the chain rule is applied to obtain the local partial derivatives with
respect to the cartesian coordinates (ξ, η, ζ) of the reference element T 3, i.e.,

∇ =




∂

∂ξ
∂

∂η
∂

∂ζ




=




4
(1− b)(1− c)

∂

∂a
2(1 + a)

(1− b)(1− c)
∂

∂a
+

2
(1− c)

∂

∂b
2(1 + a)

(1− b)(1− c)
∂

∂a
+

(1 + b)
(1− c)

∂

∂b
+

∂

∂c




. (17)

For the cases b = 1 or c = 1, the operator ∇ becomes singular. This problem may be avoided using
Gauss-Radau quadrature along the b and c-directions.

3 Fully tensorial bases for triangles and tetrahedra

The shape functions for triangles may be written as the tensorial product of one-dimensional bases
expressed in natural coordinates as [17]

Npqr(L1, L2, L3) = φp(L1)φq(L2)φr(L3). (18)

Generally, 0 ≤ p ≤ P1, 0 ≤ q ≤ P2 and 0 ≤ r ≤ P3 and P1, P2 and P3 are the degrees of the polynomial
bases along the area coordinates L1, L2 and L3, respectively.

As indicated in Figure 4, the vertex modes are given by

NP100(L1, L2, L3) = φP1(L1)φ0(L2)φ0(L3),

N0P20(L1, L2, L3) = φ0(L1)φP2(L2)φ0(L3), (19)

N00P3(L1, L2, L3) = φ0(L1)φ0(L2)φP3(L3).
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The edge modes (0 < p, q, r < P and P1 = P2 = P ) are

Npq0(L1, L2, L3) = φp(L1)φq(L2)φ0(L3),

Np0r(L1, L2, L3) = φp(L1)φ0(L2)φr(L3), (20)

N0qr(L1, L2, L3) = φ0(L1)φq(L2)φr(L3).

Finally, the general expression for the face modes (0 < p, q, r < P − 1) is

Npqr(L1, L2, L3) = φp(L1)φq(L2)φr(L3). (21)

q

r

P

P P

0 0

3

1 2

p

0
(a) Indices p, q and r.
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F

A
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(b) Topological entities.
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(0,q,r)

(0,P ,0)(p,q,0)1(P ,0,0)

(p,q,r)
(p,0,r)

2

3

(c) Entities and indices p, q and r.

Figure 4: Association of topological entities and indices p, q, r for triangles.

Hierarchical and non-hierarchical nodal bases may be constructed, respectively, using the following
definitions

φp(L1) =

{
1 p = 0

L1L
(P1−2)
p (L1) 0 < p ≤ P1

, (22)

φp(L1) =





1 p = 0

L1 p = P1

L1L
(P1−2)
p 0 < p < P1

. (23)

The truncated Lagrange polynomial is defined by [17]

L(P1−2)
p (L1) = −4

P1−1∏

q=1,q 6=p

(L1 − L1q )

P1∏

q=0,q 6=p

(L1p − L1q )

.
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Modal basis for triangles are obtained using

φp(L1) =





1 p = 0

L1 p = P1

2L1P
α1,β1
p−1 (2L1 − 1) 0 < p < P1

. (24)

Similar expressions are defined for the L2 and L3 directions.
The extension for tetrahedra is direct and the shape functions are given by

Npqrs(L1, L2, L3, L4) = φp(L1)φq(L2)φr(L3)φs(L4), (25)

The indices p, q, r, s are indicated in Figure 5.
Due to their tensorial nature, the non-hierarchical bases obtained using the previous procedures

have a natural C0-continuity [17]. In addition, very efficient tensorial based integration rules may be
used.
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Figure 5: Association of topological entities and indices p, q, r, s for tetrahedra.
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4 Results

4.1 Comparison of the bases

In this section, the Sherwin-Karniadakis and the fully tensorial bases for triangles are compared in
terms of the condition numbers of the local mass and stiffness matrices for the Laplace operator. The
results are shown in Figure 6 for one local element with and without the Schur’s complement. Figure
7 shows the conditioning for a mesh of eight elements for the tensorial basis, with and without the
Schur’s complement. For the tensorial basis, α = 0 and β = 2 were used due to the best conditioning
of the element matrices.
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(b) Stiffness.

Figure 6: Condition numbers of the mass and stiffness matrices for the Sherwin (sk) and Bittencourt
bases.

The behavior of the tensorial basis is similar to the Sherwin-Karniadakis basis, but for the stiffness
matrix the last basis is superior for non-distorted elements. The condition numbers for Basis 1 with
odd degrees increase remarkably.

4.2 Non-linear elasticity

The Spectral/hp FEM will be applied to the problem of large deformation of a cantilever beam
submitted to its own weight and a constant surface load [2]. The mesh used of 23 tetrahedra, the
boundary conditions and surface load are illustrated in Figure 8. The dimensions of the beam are
c = 3.0 m× l = 0.3 m×h = 0.05 m. The material properties are ρ = 250.0 kg/m3, E = 4.0×108 N/m2
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Figure 7: Condition numbers of the mass and stiffness matrices for a mesh of 8 triangles.

(a) Mesh with 23 elements. (b) Boundary conditions.

Figure 8: Non-linear cantilever beam.

and ν = 0.3. The surface load intensity is 100.0 N/m2 and applied in the negative y-direction. The
solutions were obtained for p = 1, . . . , 8 using the Newton-Raphson method with one load step. The
energy stop criterion in the Euclidian norm were used with 10−4 precision. The results are compared
for one node of the mesh with the non-linear formulation of the ANSYS software based on the h-version
and taking the equivalent numbers of degrees of freedom for the two formulations.
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Figure 9: Error behaviour for the non-linear cantilever beam.

Figures 9(a) and 9(b) show the convergence behaviour of the solutions in the non-linear cantilever
beam when the approximation space is refined for p = 1, . . . , 8. The convergence is indicated, respec-
tively, in terms of the logarithmic and percentual of the relative error in the energy norm versus the
number of degrees of freedom. Figure 9(a) also shows the comparison of the relative errors for the h and
p versions of FEM. The results for the h-version were extrapolated based on the solutions calculated
for meshes of 23, 33, 64 and 108 elements.

As in the linear case, it may be observed from Figure 9(a) that the p-version has an exponential
convergence rate for the non-linear cantilever beam. The rate of convergence of the p-version is very
superior when compared with the results obtained for h-version. For non-linear problems, the larger
stiffness produced by the linear Lagrange elements is more critical when compared to the linear case.

The estimate of the energy of the exact solution for the mesh with 23 elements using the a-posteriori
estimate given [3] is

Π(u) ≈ 21.19735351. (26)

For the mesh with 23 elements illustrated in Figure 8(a) and polynomial order p = 5, Figure 10
shows the behaviour of the non-linear solution obtained with 5 load steps according to the Euclidian
norm of the load, displacement and energy criteria of the Newton-Rhapson procedure [18]. It may
be observed that the convergence criteria are not absolutely equivalent in terms of the norms of
their respective expressions used to measure convergence. The energy criterion has an intermediate
behaviour and is situated between the limits of the displacement and load criteria.

Figure 11 shows the displacements in the y-direction for one node of the mesh obtained from the
linear and non-linear models. Due to the non-linear stiffness, the displacement at the end of each load
step is lower than that of the linear case.
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(b) Load criterion.
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(c) Energy criterion.

Figure 10: Convergence of Newton-Rhapson iterations for the three convergence criteria versus the
total number of iterations and p = 5.
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Figure 11: Load steps versus the nodal y-displacement for the linear and non-linear models.

Table 1 presents the comparison of the displacement components for one node of the mesh calculated
using the ANSYS program and the Spectral/hp FEM. Two different meshes were used. The p-mesh
has 23 tetrahedral and polynomial order p = 5. The ANSYS mesh has 303 quadratic tetrahedral.
For both meshes, the number of degrees of freedom is 2100. The displacement and load convergence
criteria were used simultaneously in the ANSYS program. The precisions were 10−3 and 10−6 for
the load and displacement convergence criteria, respectively. For the Spectral/hp FEM, the energy
criterion was used with 10−4 precision. The results have a reasonable agreement which shows that the
Spectral/hp Methods are suitable also for non-linear solid mechanic problems.
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Table 1: Comparison of the nodal solution for the non-linear cantilever beam obtained from the
ANSYS program and the Spectral/hp Method.

Displacement u [m]

Mesh DOFs Node Formulation ux uy uz

h 2100 5 ANSYS -0,46644e-01 -0,52177 0,50587e-04

p = 5 2100 5 Spectral/hp -0,46630e-01 -0,52143 -0,13399e-03

5 Conclusions

Traditionally, high-order methods have been used in fluid mechanics. This paper presented two high-
order finite element bases that may be used effectively to problems of solid mechanics. The behavior
of the two bases are similar in terms of the conditioning of the local matrices. The fully tensorial basis
has been implemented in a C++ software basis and will be applied to impact problems.
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